Startseite On the polynomial entropy for morse gradient systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the polynomial entropy for morse gradient systems

  • Jelena Katić EMAIL logo und Milan Perić
Veröffentlicht/Copyright: 21. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We adapt the construction from [HAUSEUX, L.—LE ROUX, F.: Polynomial entropy of Brouwer homeomorphisms, arXiv:1712.01502 (2017)] to obtain an easy method for computing the polynomial entropy for a continuous map of a compact metric space with finitely many non-wandering points. We compute the maximal cardinality of a singular set of Morse negative gradient systems and apply this method to compute the polynomial entropy for Morse gradient systems on surfaces.

  1. (Communicated by Michal Fečkan)

Acknowledgement

The authors thank Frédéric Le Roux for some explanations. The authors also thank the anonymous referee for many useful comments and suggestions.

References

[1] Artigue, A.—Carrasco-Olivera, D.—Monteverde, I.: Polynomial entropy and expansivity, Acta Math. Hungar. 152 (2017), 140–149. https://doi.org/10.1007/s10474-017-0689-3.10.1007/s10474-017-0689-3Suche in Google Scholar

[2] Banyaga, A.—Hurtubise, D.: Lecture on Morse Homology. Texts Math. Sci. 29, Kluwer Academic Publisher, 2004.10.1007/978-1-4020-2696-6Suche in Google Scholar

[3] Bernard, P.—Labrousse, C.: An entropic characterization on the flat metric on the two torus, Geom. Dedicata 180 (2016), 187–201.10.1007/s10711-015-0098-0Suche in Google Scholar

[4] Eells, J.—Kuiper, N.: Manifolds which are like projective planes, Publ. Math. de I.H.E.S. 14 (1962), 5–46.10.1007/BF02684323Suche in Google Scholar

[5] Hauseux, L.—Le Roux, F.: Polynomial entropy of Brouwer homeomorphisms, arXiv:1712.01502 (2017).Suche in Google Scholar

[6] Labrousse, C.: Polynomial entropy for the circle homeomorphisms and forC1nonvanishing vector fields on 𝕋2, arXiv:1311.0213 (2013).Suche in Google Scholar

[7] Labrousse, C.: Flat metrics are strict local minimizers for the polynomial entropy, Regul. Chaotic Dyn. 17 (2012), 479–491.10.1134/S1560354712060019Suche in Google Scholar

[8] Labrousse, C.: Polynomial growth of the volume of balls for zero-entropy geodesic systems, Nonlinearity 25 (2012), 3049–3069.10.1088/0951-7715/25/11/3049Suche in Google Scholar

[9] Labrousse, C.—Marco, J. P.: Polynomial entropies for Bott integrable Hamiltonian systems, Regul. Chaotic Dyn. 19 (2014), 374–414.10.1134/S1560354714030083Suche in Google Scholar

[10] Marco, J. P.: Dynamical complexity and symplectic integrability, arXiv:0907.5363v1 (2009).Suche in Google Scholar

[11] Marco, J. P.: Polynomial entropies and integrable Hamiltonian systems, Regul. Chaotic Dyn. 18(6) (2013), 623–655.10.1134/S1560354713060051Suche in Google Scholar

[12] Palis, J.: On Morse-Smale dynamical systems, Topology 8(4) (1969), 385–404.10.1016/0040-9383(69)90024-XSuche in Google Scholar

[13] Schwarz, M.: Morse Homology. Progress in Math. 111, Birkhäuser Verlag, Basel, 1993.10.1007/978-3-0348-8577-5Suche in Google Scholar

Received: 2018-05-06
Accepted: 2018-09-21
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0251/html
Button zum nach oben scrollen