Startseite Discrete averaged mixing applied to the logarithmic distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Discrete averaged mixing applied to the logarithmic distributions

  • Gejza Wimmer EMAIL logo , Ján Mačutek und Gabriel Altmann
Veröffentlicht/Copyright: 5. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new type of mixtures of discrete probability distributions is presented. A family of discrete averaged mixed distributions is introduced. Its subclass of averaged mixed logarithmic distributions is analyzed. Probabilistic characterizations and connections with other types of mixing are derived. We show also some examples of the analyzed distributions found in literature.

MSC 2010: Primary 62E15; 60E05

Dedicated to Professor Anatolij Dvurečenskij on the occasion of his 65th birthday

(Communicated by Sylvia Pulmannová)

Supported by the grant No. 2/0047/15 of the Grant Agency VEGA (G. Wimmer, J. Mačutek) and grant No. APVV-15-0295 of the Grant Agency APVV (G. Wimmer).


References

[1] Bunge, M.: Treatise on Basic Philosophy. Epistemology and Methodology II: Understanding the World, Reidel, Dordrecht, 1983.10.1007/978-94-015-6921-7Suche in Google Scholar

[2] Cane, V.: Mathematical models for neural networks. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 4, Math. Sci. Publ., Berkeley, CA, 1967, pp. 21–26.Suche in Google Scholar

[3] Elderton, W. P.—Johnson, N. L.: Systems of Frequency Curves, Cambridge University Press, Cambridge, 2008.Suche in Google Scholar

[4] Gross, D.—Harris, C. M.: Fundamentals of Queueing Theory, Wiley, New York, 1985.Suche in Google Scholar

[5] Holgate, P.: A modified geometric distribution arising in trapping studies, Acta Theriologica 9 (1964), 353–356.10.4098/AT.arch.64-36Suche in Google Scholar

[6] Holgate, P.: Contribution to the mathematics of animal trapping, Biometrics 22 (1966), 925–936.10.2307/2528082Suche in Google Scholar

[7] Jackson, R. R. P.—Nichols, D. G.: Some equilibrium results for the queueing process 𝓁k/M/1, J. R. Stat. Soc. Ser. B Stat. Methodol. 18 (1956), 275–279.10.1111/j.2517-6161.1956.tb00234.xSuche in Google Scholar

[8] Johnson, N. L.—Kemp, A. W.—Kotz, S.: Univariate Discrete Distributions, Wiley, Hoboken, NJ, 2005.10.1002/0471715816Suche in Google Scholar

[9] Kemp, A. W.: Convolutions involving binomial pseudovariables, Sankhyāá 41 (1979), 232–243.Suche in Google Scholar

[10] Kobayashi, H.: Stochastic modelling: Queueing models. In: Probability Theory and Computer Science (G. Louchard, G. Latouche, eds.), Academic Press, London, 1983, pp. 53–121.Suche in Google Scholar

[11] Kopp-Schneider, R. A.: Birth-death process with piecewise constant rates, Statist. Probab. Lett. 13 (1992), 121–127.10.1016/0167-7152(92)90086-KSuche in Google Scholar

[12] Lotka, A. J.: Théorie analytique des associations biologiques II. Acualités scientifiques et industrielles 780, 1939.Suche in Google Scholar

[13] Lwin, T.: A modified power series distribution, Ann. Inst. Statist. Math. (Tokyo) 33 (1981), 361–374.10.1007/BF02480947Suche in Google Scholar

[14] Manly, B. F. J.—Seber, G. A. F.: Animal life tables from capture-recapture data, Biometrics 29 (1973), 487–500.10.2307/2529172Suche in Google Scholar

[15] Osawa, H.: Reversibility of Markov chains with applications to storage models, J. Appl. Probab. 22 (1985), 123–137.10.2307/3213752Suche in Google Scholar

[16] Panaretos, J.: On Moran’s property of the Poisson distribution, Biom. J. 25 (1983), 69–76.10.1002/bimj.19830250108Suche in Google Scholar

[17] Plunkett, I. G.—Jain, G. C.: Three generalized negative binomial distributions, Biometrische Zeitschrift 17 (1975), 286–302.10.1002/bimj.19750170503Suche in Google Scholar

[18] Prabhu, N. V.: Queues and Inventories, Wiley, New York, 1965.Suche in Google Scholar

[19] Rubin, H.—Vere-Jones, D.: Domains of attraction for the subcritical Galton-Watson branching process, J. Appl. Probab. 5 (1968), 216–219.10.2307/3212089Suche in Google Scholar

[20] Rubinovitch, M.: The slow server problem: A queue with stalling, J. Appl. Probab. 22 (1985), 879–892.10.2307/3213955Suche in Google Scholar

[21] Tin, P.: A queueing system with Markov-dependent arrivals, J. Appl. Probab. 22 (1985), 668–677.10.1017/S0021900200029417Suche in Google Scholar

[22] Vadzinskii, R. N.: Spravochnik po veroyatnostnym raspredeleniyam, Nauka, Sankt-Peterburg, 2001.Suche in Google Scholar

[23] Wimmer, G.—Altmann, G.: The Multiple Poisson distribution, its characteristics and variety of forms, Biom. J. 38 (1996), 995–1011.10.1002/bimj.4710380811Suche in Google Scholar

[24] Wimmer, G.—Altmann, G.: Thesaurus of univariate discrete probability distributions, Stamm, Essen, 1999.Suche in Google Scholar

[25] Wimmer, G.—Altmann, G.: Unified derivation of some linguistic laws. In: Quantitative Linguistics. An International Handbook (R. Köohler, G. Altmann, R. G. Piotrowski, eds.), de Gruyter, Berlin-New York, 2005, pp. 791-807.Suche in Google Scholar

Received: 2014-2-12
Accepted: 2014-10-27
Published Online: 2016-7-5
Published in Print: 2016-4-1

© Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0152/pdf
Button zum nach oben scrollen