Home Note on a parameter switching method for nonlinear ODEs
Article
Licensed
Unlicensed Requires Authentication

Note on a parameter switching method for nonlinear ODEs

  • Marius-F. Danca EMAIL logo and Michal Fečkan
Published/Copyright: July 5, 2016
Become an author with De Gruyter Brill

Abstract

In this paper we study analytically a parameter switching (PS) algorithm applied to a class of systems of ODE, depending on a single real parameter. The algorithm allows the numerical approximation of any solution of the underlying system by simple periodical switches of the control parameter. Near a general approach of the convergence of the PS algorithm, some dissipative properties are investigated and the dynamical behavior of solutions is investigated with the Lyapunov function method. A numerical example is presented.


Dedicated to Professor Anatolij Dvurečenskij on the occasion of his 65th birthday

(Communicated by Jozef Džurina)

M. Fečkan is partially supported by Grants VEGA-MS 1/0071/14 and VEGA-SAV 2/0153/16.


References

[1] ALMEIDA, J.—PERALTA-SALAS, D.—ROMERA, M.: Can two chaotic systems give rise to order?, Phys. D 200 (2005), 124–132.10.1016/j.physd.2004.10.003Search in Google Scholar

[2] DANCA, M.-F.: Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo’s paradox, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 500–510.10.1016/j.cnsns.2012.08.019Search in Google Scholar

[3] DANCA, M.-F.: Random parameter-switching synthesis of a class of hyperbolic attractors, Chaos 18 (2008), 033111.10.1063/1.2965524Search in Google Scholar PubMed

[4] DANCA, M.-F.—FEČKAN, M.—ROMERA, M.: Chaos control of logistic map by means of a generalized Parrondo’s game, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014), 1450008, 17 pp.10.1142/S0218127414500084Search in Google Scholar

[5] DANCA, M.-F.—ROMERA, M.—PASTOR, G.—MONTOYA, F.: Finding attractors of continuous-time systems by parameter switching, Nonlinear Dynam. 67 (2012), 2317–2342.10.1007/s11071-011-0172-6Search in Google Scholar

[6] DIECI, L.—LOPEZ, L.: A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side, J. Comput. Appl. Math. 236 (2012), 3967–3991.10.1016/j.cam.2012.02.011Search in Google Scholar

[7] FExČKAN, M.: Topological Degree Approach to Bifurcation Problems (1st ed.), Springer, Berlin, 2008.10.1007/978-1-4020-8724-0Search in Google Scholar

[8] GUCKENHEIMER, J.—HOLMES, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer-Verlag, New-York, 1983.10.1007/978-1-4612-1140-2Search in Google Scholar

[9] HAIRER, E.—LUBICH, CH.—WANNER, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd ed.), Springer-Verlag, Berlin, 2006.Search in Google Scholar

[10] HALE, J. K.: Ordinary Differential Equations, Dover Publications, New York, 2009.Search in Google Scholar

[11] MAO, Y.—TANG, W. K. S.—DANCA, M-F.: An averaging model for chaotic system with periodic time-varying parameter, Appl. Math. Comput. 217 (2010), 355–362.10.1016/j.amc.2010.05.068Search in Google Scholar

[12] ROMERA, M.—SMALL, M.—DANCA, M.-F.: Deterministic and random synthesis of discrete chaos, Appl. Math. Comput. 192 (2007), 283–297.10.1016/j.amc.2007.02.142Search in Google Scholar

[13] ROUCHE, N.—HABETS, P.—LALOY, M.: Stability Theory by Liapunov’s Direct Method, Springer-Verlag, New York, 1977.10.1007/978-1-4684-9362-7Search in Google Scholar

[14] RUDIN, W.: Functional Analysis, McGraw-Hill, New York, 1973.Search in Google Scholar

[15] SANDERS, J. A.—VERHULST, F.—MURDOCK, J.: Averaging Methods in Nonlinear Dynamical Systems (2nd ed.), Springer-Verlag, New York, 2007.Search in Google Scholar

[16] STAMOVA, I. M.—STAMOV, G. T.: Stability analysis of differential equations with maximum, Math. Slovaca 63 (2013), 1291–1302.10.2478/s12175-013-0171-9Search in Google Scholar

[17] STUART, A. M.—HUMPHRIES, A. R.: Dynamical Systems and Numerical Analysis, Cambridge Univ. Press, Cambridge, 1998.Search in Google Scholar

[18] TANG, W. K. S.—DANCA, M.-F.: Emulating “Chaos + Chaos = Order” in Chen’s circuit of fractional order by parameter switching, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (To appear).10.1142/S0218127416500966Search in Google Scholar

Received: 2013-5-27
Accepted: 2014-1-5
Published Online: 2016-7-5
Published in Print: 2016-4-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0148/html
Scroll to top button