Startseite Extensions and measurability in quantum measure spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extensions and measurability in quantum measure spaces

  • Mona Khare EMAIL logo und Anurag Shukla
Veröffentlicht/Copyright: 6. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of the present paper is to study extension of functions defined on a subfamily of a D-poset E, as well as ν-measurability of elements in E. We have also considered monotone extensions for a nested sequence of generalized quantum spaces.


Dedicated to Professor Anatolij Dvurečenskij on the occasion of his 65th birthday (Communicated by Sylvia Pulmannová)

The second author acknowledges financial support by Council of Scientific and Industrial Research (CSIR), New Delhi (India), under Grant No. 09/001(0320)/2009-EMR-I.


References

1 Avallone, A.—Basile, A.: On a Marinacci uniqueness theorem for measures, J. Math. Anal. Appl. 286 (2003), 378–390.10.1016/S0022-247X(03)00274-9Suche in Google Scholar

2 Avallone, A.—de Simone, A.: Extensions of modular functions on orthomodular lattices, Ital. J. Pure Appl. Math. 9 (2001), 109–122.Suche in Google Scholar

3 Beltrametti, E. G.—Cassinelli, G.: The Logic of Quantum Mechanics, Addison-Wesley Publishing Co., Reading, MA, 1981.Suche in Google Scholar

4 Bennet, M. K.—Foulis, D. J.: Phi-symmetric effect algebras, Found. Phys. 25 (1995), 1699–1722.10.1007/BF02057883Suche in Google Scholar

5 Bennet, M. K.—Foulis, D. J.—Greechie, R. J.: Sums and products of interval algebras, Internat. J. Theoret. Phys. 33 (1994), 2114–2136.10.1007/BF00675796Suche in Google Scholar

6 Birkhoff, G.—Von Neumann, J.: The logic of quantum mechanics, Ann. Math. 37 (1936), 823–834.10.2307/1968621Suche in Google Scholar

7 Butnariu, D.—Klement, P.: Triangular Norm-based Measures and Games with Fuzzy Coalitions, Kluwer, Dordrecht, 1993.10.1007/978-94-017-3602-2Suche in Google Scholar

8 Dvurecenskij, A.—PulmannovÁ, S.: Difference posets, effects and quantum structures, Internat. J. Theoret. Phys. 33 (1994), 819–850.10.1007/BF00672820Suche in Google Scholar

9 Dvurecenskij, A.—PulmannovÁ, S.: New Trends in Quantum Structures, Kluwer Acad. Pub., Dordrecht, 2000.10.1007/978-94-017-2422-7Suche in Google Scholar

10 Foulis, D. J.—Bennett, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.10.1007/BF02283036Suche in Google Scholar

11 Kagan, E.—Ben-Gal, I.: Navigation of Quantum-Controlled Mobile Robots, In: Recent Advances in Mobile Robotics (A. Topalov ed.), InTech, 2011, pp. 311–326.10.5772/25944Suche in Google Scholar

12 Kalmbach, K.: Orthomodular Lattices, Academic Press, London, 1983.Suche in Google Scholar

13 Khare, M.—Gupta, S.: Extension of nonadditive measures on locally complete σ-continuous lattices, Novi Sad J. Math. 38 (2008), 15–23.Suche in Google Scholar

14 Khare, M.—Gupta, S.: Non-additive measures, envelops and extensions of quasi-measures, Sarajevo J. Math. 6(18) (2010), 35–49.10.5644/SJM.06.1.03Suche in Google Scholar

15 Khare, M.—Roy, S.: Conditional entropy and the Rokhlin metric on an orthomodular lattice with Bayessian state, Internat. J. Theoret. Phys. 47 (2008), 1386–1396.10.1007/s10773-007-9581-1Suche in Google Scholar

16 Khare, M.—Roy, S.: Entropy of quantum dynamical systems and sufficient families in orthomodular lattice with Bayessian state, Commun. Theor. Phys. 50 (2008), 551–556.10.1088/0253-6102/50/3/02Suche in Google Scholar

17 Khare, M.—Singh, A. K.: Weakly tight functions, their Jordan type decomposition and total variation in effect algebras, J. Math. Anal. Appl. 344 (2008), 535–545.10.1016/j.jmaa.2008.03.017Suche in Google Scholar

18 Khare, M.—Singh, A. K.: Pseudo-atoms, atoms and a Jordan type decomposition in effect algebras, J. Math. Anal. Appl. 344 (2008), 238–252.10.1016/j.jmaa.2008.03.003Suche in Google Scholar

19 Kôopka, F.—Chovanec, F.: D-posets, Math. Slovaca 44 (1994), 21–34.Suche in Google Scholar

20 Ludwig, G.: Foundations of Quantum Mechanics, Vols. I; II, Springer, New York, 1983; 1985.10.1007/978-3-642-86751-4Suche in Google Scholar

21 Pap, E.: Null-additive Set Functions, Kluwer Acad. Publ., Dordrecht, 1995.Suche in Google Scholar

22 Riecan, B.—Neubrunn, T.: Integral, Measure and Ordering, Kluwer Acad. Publ., Bratislava, 1997.10.1007/978-94-015-8919-2Suche in Google Scholar

23 Weber, H.: Two extension theorems, modular functions on complemented lattices, Czechoslovak Math. J. 52(127) (2002), 55–74.10.1023/A:1021719320528Suche in Google Scholar

Received: 2014-3-3
Accepted: 2014-9-3
Published Online: 2016-6-6
Published in Print: 2016-4-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0142/html
Button zum nach oben scrollen