Startseite Mathematik A Result Concerning Additive Mappings in Semiprime Rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Result Concerning Additive Mappings in Semiprime Rings

  • Maja Fos̆ner EMAIL logo
Veröffentlicht/Copyright: 9. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we prove the following result. Let R be a 2-torsion free semiprime ring and let f : R → R be an additive mapping satisfying the relation f(x)x2 + x2f(x) = 0 for all x ∈ R. In this case f = 0. Any semisimple Banach algebra (for example, C* algebra) is semiprime. Therefore this algebraic result might be of some interest from functional analysis point of view.

References

[1] ASHRAF, M.-VUKMAN, J.: On derivations and commutativity in semiprime rings, Aligarh Bull. Math. 18 (1999), 29-38.Suche in Google Scholar

[2] BAXTER, W. E.-MARTINDALE, W. S. III: Jordan homomorphisms of semiprime rings, J. Algebra 56 (1979), 457-471.10.1016/0021-8693(79)90349-1Suche in Google Scholar

[3] BEIDAR, K. I.-MARTINDALE,W. S. III-MIKHALEV, A. V.: Rings with Generalized Identities, Marcel Dekker, Inc., New York, 1996.Suche in Google Scholar

[4] BREŠAR, M.: On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641-649.10.1090/S0002-9939-1992-1072330-XSuche in Google Scholar

[5] BREŠAR, M.: Centralizing mappings of rings, J. Algebra 156 (1993), 385-394.10.1006/jabr.1993.1080Suche in Google Scholar

[6] BREŠAR, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.10.1090/S0002-9947-1993-1069746-XSuche in Google Scholar

[7] BREŠAR, M.: On skew-commuting mappings of rings, Bull. Aust. Math. Soc. 47 (1993), 291-296.10.1017/S0004972700012521Suche in Google Scholar

[8] BREŠAR, M.-HVALA, B.: On additive maps of prime rings, Bull. Aust. Math. Soc. 51 (1995), 377-381.10.1017/S0004972700014209Suche in Google Scholar

[9] BREŠAR, M.-HVALA, B.: On additive maps of prime rings, II, Publ. Math. Debrecen 54 (1999), 39-54.10.5486/PMD.1999.1951Suche in Google Scholar

[10] BREŠAR, M.-VUKMAN, J.: On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185.10.1007/BF01840003Suche in Google Scholar

[11] BREŠAR, M.-VUKMAN, J.: On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), 7-16.10.1090/S0002-9939-1990-1028284-3Suche in Google Scholar

[12] BREŠAR, M.-VUKMAN, J.: Derivations of noncommuatative Banach algebras, Arch. Math. (Basel) 59 (1992), 363-370.10.1007/BF01197053Suche in Google Scholar

[13] FOŠNER, A.-VUKMAN, J.: Some results concerning additive mappings and derivations on semiprime rings, Publ. Math. Debrecen 78 (2011), 575-581.10.5486/PMD.2011.4792Suche in Google Scholar

[14] HERSTEIN, I. N.: Rings with Involution, Chicago University Press, Chicago-London, 1976.Suche in Google Scholar

[15] POSNER, E. C.: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.10.1090/S0002-9939-1957-0095863-0Suche in Google Scholar

[16] VUKMAN, J.: Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52.10.1090/S0002-9939-1990-1007517-3Suche in Google Scholar

[17] VUKMAN, J.: On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), 877-884.10.1090/S0002-9939-1992-1072093-8Suche in Google Scholar

[18] VUKMAN, J.: Derivations on semiprime rings, Bull. Aust. Math. Soc. 53 (1996), 353-359.10.1017/S000497270001710XSuche in Google Scholar

[19] VUKMAN, J.: Identities with derivations on rings and Banach algebras, Glas. Mat. 40 (2005), 189-199.10.3336/gm.40.2.01Suche in Google Scholar

[20] VUKMAN, J.: On α-derivations of prime and semiprime rings, Demonstratio Math. 38 (2005), 811-817.10.1515/dema-2005-0405Suche in Google Scholar

[21] VUKMAN, J.: On left Jordan derivations of rings and Banach algebras, Aequationes Math. 75 (2008), 260-266.10.1007/s00010-007-2872-zSuche in Google Scholar

[22] VUKMAN, J.-KOSI-ULBL, I.: On some equations related to derivations in rings, Int. J. Math. Math. Sci. 17 (2005), 2703-2710. 10.1155/IJMMS.2005.2703Suche in Google Scholar

Received: 2013-3-3
Accepted: 2013-2-4
Published Online: 2016-2-9
Published in Print: 2015-12-1

Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Radius, Diameter and the Degree Sequence of a Graph
  2. On Primary Ideals in Posets
  3. Characterization of the Set of Regular Elements in Ordered Semigroups
  4. Tame Automorphisms with Multidegrees in the Form of Arithmetic Progressions
  5. A Result Concerning Additive Mappings in Semiprime Rings
  6. Characterizing Jordan Derivations of Matrix Rings Through Zero Products
  7. Existence Results for Impulsive Nonlinear Fractional Differential Equations With Nonlocal Boundary Conditions
  8. The Radon-Nikodym Property and the Limit Average Range
  9. A Hake-Type Theorem for Integrals with Respect to Abstract Derivation Bases in the Riesz Space Setting
  10. On Booth Lemniscate and Hadamard Product of Analytic Functions
  11. Recursion Formulas for Srivastava Hypergeometric Functions
  12. Regularly Varying Solutions of Half-Linear Diffferential Equations with Retarded and Advanced Arguments
  13. Singular Degenerate Differential Operators and Applications
  14. The Interior Euler-Lagrange Operator in Field Theory
  15. On Selections of Set-Valued Maps Satisfying Some Inclusions in a Single Variable
  16. The Family F of Permutations of ℕ
  17. Summation Process of Positive Linear Operators in Two-Dimensional Weighted Spaces
  18. On Iλ-Statistical Convergence in Locally Solid Riesz Spaces
  19. Some Norm one Functions of the Volterra Operator
  20. Some Results on Absolute Retractivity of the Fixed Points Set of KS-Multifunctions
  21. Convexity in the Khalimsky Plane
  22. Natural Boundary Conditions in Geometric Calculus of Variations
  23. Exponential Inequalities for Bounded Random Variables
  24. Precise Rates in the Law of Iterated Logarithm for the Moment Convergence of φ-Mixing Sequences
  25. Second Order Riemannian Mechanics
  26. Further Remarks on an Order for Quantum Observables
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0088/html
Button zum nach oben scrollen