Home On Iλ-Statistical Convergence in Locally Solid Riesz Spaces
Article
Licensed
Unlicensed Requires Authentication

On Iλ-Statistical Convergence in Locally Solid Riesz Spaces

  • Pratulananda Das EMAIL logo and Ekrem Savas
Published/Copyright: February 9, 2016
Become an author with De Gruyter Brill

Abstract

In this paper, we extend some results concerning statistical convergence in locally solid Riesz spaces by introducing a more general idea of convergence, namely Iλ-statistical convergence. We investigate the ideas of Iλ-statistical-τ-convergence, Iλ-statistical-τ-boundedness and Iλ-statistical-τ-Cauchy condition of sequences in a locally solid Riesz space endowed with a topology τ and investigate some of their consequences.

References

[1] ALBAYRAK, H.-PEHLIVAN, S.: Statistical convergence and statistical continuity on locally solid Riesz spaces, Topology Appl. 159 (2012), 1887-1893.10.1016/j.topol.2011.04.026Search in Google Scholar

[2] ALBAYRAK, H.-PEHLIVAN, S.: Erratum to “Statistical convergence and statistical continuity on locally solid Riesz spaces”, Topology Appl. 160 (2013), 443-444.10.1016/j.topol.2012.11.014Search in Google Scholar

[3] ALIPRANTIS, C. D.-BURKINSHAW, O.: Locally Solid Riesz Spaces with Applications to Economics (2nd ed.), Amer. Math. Soc., Providence, RI, 2003.10.1090/surv/105Search in Google Scholar

[4] ALIPRANTIS, C. D.-BURKINSHAW, O.: Positive Operators, Springer, Dordrecht, 2006.10.1007/978-1-4020-5008-4Search in Google Scholar

[5] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in (l)-groups, TatraMt. Math. Publ. 49 (2011), 17-26.Search in Google Scholar

[6] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Some versions of limit and Dieudonne-type theorems with respect to filter convergence for (l)-group-valued measures, Cent. Eur. J. Math. 9 (2011), 1298-1311.10.2478/s11533-011-0083-2Search in Google Scholar

[7] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Basic matrix theorems for I-convergence in (l)-groups, Math. Slovaca 62 (2012), 885-908.10.2478/s12175-012-0053-6Search in Google Scholar

[8] BOCCUTO, A.-DIMITRIOU, X.-PAPANASTASSIOU, N.: Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca 62 (2012), 1145-1166.10.2478/s12175-012-0070-5Search in Google Scholar

[9] CASERTA, A.-MAIO,G. DI-KOČINAC, LJ. D. R.: Statistical convergence in function spaces, Abstr. Appl. Anal. 2011 (2011), Article ID 420419, 11 pp..Search in Google Scholar

[10] DEMS, K.: On I-Cauchy sequences, Real Anal. Exchange 30 (2004/2005), 123-128.10.14321/realanalexch.30.1.0123Search in Google Scholar

[11] DAS, P.-KOSTYRKO, P.-WILCZYŃSKI, W.-MALIK, P.: On I and I∗-convergence of double sequences, Math. Slovaca 58 (2008), 605-620.10.2478/s12175-008-0096-xSearch in Google Scholar

[12] DAS, P.-GHOSAL, S.: Some further results on I-Cauchy sequences and condition (AP), Comput. Math. Appl. 59 (2010), 2597-2600.10.1016/j.camwa.2010.01.027Search in Google Scholar

[13] DAS, P.-GHOSAL, S. K.: On I-Cauchy nets and completeness, Topology Appl. 157 (2010), 1152-1156.10.1016/j.topol.2010.02.003Search in Google Scholar

[14] DAS, P.-GHOSAL, S. K.: When I-Cauchy nets in complete uniform spaces are I-convergent, Topology Appl. 158 (2011), 1529-1533.10.1016/j.topol.2011.05.006Search in Google Scholar

[15] DAS, P.-SAVAS, E.-GHOSAL, S. K.: On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24 (2011), 1509-1514.10.1016/j.aml.2011.03.036Search in Google Scholar

[16] DAS, P.-SAVAS, E.: On I-convergence of nets in locally solid Riesz spaces, Filomat 27 (2013), 84-89.Search in Google Scholar

[17] FAST, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.10.4064/cm-2-3-4-241-244Search in Google Scholar

[18] FRIDY, J. A.: On statistical convergence, Analysis (Oxford) 5 (1985), 301-313.Search in Google Scholar

[19] KOSTYRKO, P.-ŠALÁT, T.-WILCZYŃSKI,W.: I-convergence, Real Anal. Exchange 26 (2000/2001), 669-685.10.2307/44154069Search in Google Scholar

[20] KOSTYRKO, P.-MACAJ, M.-ŠALÁT, T.-SLEZIAK, M.: I-convergence and extremal I-limit points, Math. Slovaca 55 (2005), 443-464.Search in Google Scholar

[21] KURATOWSKI, K.: Topology I, PWN, Warszawa, 1961.Search in Google Scholar

[22] LAHIRI B.K.-DAS, P.: Further results on I-limit superior and limit inferior, Math. Commun. 8 (2003), 151-156.Search in Google Scholar

[23] LAHIRI B. K.-DAS, P.: I and I∗-convergence in topological spaces, Math. Bohem. 130 (2005), 153-160.10.21136/MB.2005.134133Search in Google Scholar

[24] LUXEMBURG, W. A. J.-ZAANEN, A. C.: Riesz Spaces - I, North Holland, Amsterdam, 1971.Search in Google Scholar

[25] MADDOX, I. J.: Statistical convergence in locally convex spaces, Math. Proc. Cambridge Philos. Soc. 104 (1988), 141-145.10.1017/S0305004100065312Search in Google Scholar

[26] MAIO, G. DI-KOČINAC, LJ. D. R.: Statistical convergence in topology, Topology Appl. 156 (2008), 28-45.10.1016/j.topol.2008.01.015Search in Google Scholar

[27] MURSALEEN, M.: λ-statistical convergence, Math. Slovaca 50 (2000), 111-115.Search in Google Scholar

[28] MURSALEEN, M.-ALOTAIBI, A.: Statistical summability and approximation by de la Valle-Poussin mean, Appl. Math. Lett. 24 (2011), 320-324.10.1016/j.aml.2010.10.014Search in Google Scholar

[29] RIESZ, F.: Sur la decomposition des operations functionelles lineaires, Atti Congr. Internaz. Mat. Bologna 3 (1930), 143-148.Search in Google Scholar

[30] ŠALÁT, T.: On Statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150.Search in Google Scholar

[31] SAVAS, E.: Strong almost convergence and almost λ-statistical convergence, Hokkaido Math. J. 29 (2000), 531-536.10.14492/hokmj/1350912989Search in Google Scholar

[32] SAVAS, E.: On asymptotically λ-statistical equivalent sequences of fuzzy numbers, New Math. Nat. Comput. 3 (2007), 301-306.10.1142/S1793005707000781Search in Google Scholar

[33] SAVAS, E.: On λ-statistically convergent double sequences of fuzzy numbers, J. Inequal. Appl. (2008), Article ID 147827, 6 pp.Search in Google Scholar

[34] SAVAS, E.: λ-double sequence spaces of fuzzy real numbers defined by Orlicz function, Math. Commun. 14 (2009), 287-297.Search in Google Scholar

[35] SAVAS, E.-DAS, P.: A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826-830.10.1016/j.aml.2010.12.022Search in Google Scholar

[36] SAVAS, E.-DAS, P.-DUTTA, S.: A note on strong matrix summability via ideals, Appl. Math Lett. 25 (2012), 733-738. 10.1016/j.aml.2011.10.012Search in Google Scholar

[37] SENCIMEN, C.-PEHLIVAN, S.: Statistical order convergence in Riesz spaces, Math. Slovaca 62 (2012), 257-270.10.2478/s12175-012-0007-zSearch in Google Scholar

[38] SCHOENBERG, I. J.: The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375. 10.1080/00029890.1959.11989303Search in Google Scholar

Received: 2012-1-11
Accepted: 2013-3-18
Published Online: 2016-2-9
Published in Print: 2015-12-1

Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Radius, Diameter and the Degree Sequence of a Graph
  2. On Primary Ideals in Posets
  3. Characterization of the Set of Regular Elements in Ordered Semigroups
  4. Tame Automorphisms with Multidegrees in the Form of Arithmetic Progressions
  5. A Result Concerning Additive Mappings in Semiprime Rings
  6. Characterizing Jordan Derivations of Matrix Rings Through Zero Products
  7. Existence Results for Impulsive Nonlinear Fractional Differential Equations With Nonlocal Boundary Conditions
  8. The Radon-Nikodym Property and the Limit Average Range
  9. A Hake-Type Theorem for Integrals with Respect to Abstract Derivation Bases in the Riesz Space Setting
  10. On Booth Lemniscate and Hadamard Product of Analytic Functions
  11. Recursion Formulas for Srivastava Hypergeometric Functions
  12. Regularly Varying Solutions of Half-Linear Diffferential Equations with Retarded and Advanced Arguments
  13. Singular Degenerate Differential Operators and Applications
  14. The Interior Euler-Lagrange Operator in Field Theory
  15. On Selections of Set-Valued Maps Satisfying Some Inclusions in a Single Variable
  16. The Family F of Permutations of ℕ
  17. Summation Process of Positive Linear Operators in Two-Dimensional Weighted Spaces
  18. On Iλ-Statistical Convergence in Locally Solid Riesz Spaces
  19. Some Norm one Functions of the Volterra Operator
  20. Some Results on Absolute Retractivity of the Fixed Points Set of KS-Multifunctions
  21. Convexity in the Khalimsky Plane
  22. Natural Boundary Conditions in Geometric Calculus of Variations
  23. Exponential Inequalities for Bounded Random Variables
  24. Precise Rates in the Law of Iterated Logarithm for the Moment Convergence of φ-Mixing Sequences
  25. Second Order Riemannian Mechanics
  26. Further Remarks on an Order for Quantum Observables
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0101/html
Scroll to top button