Startseite Mathematik Characterizations of Banach Spaces which are not Isomorphic to any of their Proper Subspaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterizations of Banach Spaces which are not Isomorphic to any of their Proper Subspaces

  • Qingping Zeng EMAIL logo und Huaijie Zhong
Veröffentlicht/Copyright: 25. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this note we obtain some characterizations of Banach spaces which are not isomorphic to any of their proper subspaces. In particular, we show that a Banach space X is not isomorphic to any of its proper subspaces if and only the equality σRD(LT) = σLD(T) holds for every bounded linear operator T on X if and only if int(σ(T)) ⊆ σLD(T) holds for every bounded linear operator T on X, where LT denotes the left multiplication operator by T.

References

[1] AIENA, P.: Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic Publishers, Dordrecht, 2004.Suche in Google Scholar

[2] AIENA, P.: Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251-263.Suche in Google Scholar

[3] AIENA, P.-BIONDI, M. T.-CARPINTERO, C.: On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848.10.1090/S0002-9939-08-09138-7Suche in Google Scholar

[4] AIENA, P.-MILLER, T. L.: On generalized a-Browder’s theorem, Studia Math. 180 (2007), 285-300.10.4064/sm180-3-7Suche in Google Scholar

[5] AIENA, P.-SANABRIA, J. E.: On left and right poles of the resolvent, Acta Sci. Math. (Szeged) 74 (2008), 667-685.Suche in Google Scholar

[6] BEL HADJ FREDJ, O.-BURGOS,M.-OUDGHIRI,M.: Ascent spectrum and essential ascent spectrum, Studia Math. 187 (2008), 59-73.10.4064/sm187-1-3Suche in Google Scholar

[7] BERKANI,M.: Restrition of operator to the range of its power, Studia Math. 140 (2000), 163-175.10.4064/sm-140-2-163-175Suche in Google Scholar

[8] BERKANI, M.-KOLIHA, J. J.: Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.Suche in Google Scholar

[9] BERKANI,M.-SARIH, M.: An Atkinson-type theorem for B-Fredholm operators, Studia Math. 148 (2001), 251-257.10.4064/sm148-3-4Suche in Google Scholar

[10] BOASSO, E.: Drazin spectra of Banach space operators and Banach algebra elements, J. Math. Anal. Appl. 359 (2009), 48-55.10.1016/j.jmaa.2009.05.036Suche in Google Scholar

[11] BURGOS, M. ET AL: The descent spectrum and perturbations, J. Operator Theory 56 (2006), 259-271.Suche in Google Scholar

[12] GOWERS, W. T.: A solution to Banach’s hyperplane problem, Bull. Lond. Math. Soc. 26 (1994), 523-530. 13] GOWERS, W. T.-MAUREY, B.: The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.10.1090/S0894-0347-1993-1201238-0Suche in Google Scholar

[14] GRABINER, S.: Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337.10.2969/jmsj/03420317Suche in Google Scholar

[15] HAÏLY, A.-KAIDI, A.-RODRÍGUEZS PALACIOS, A.: Algebra descent spectrum of operators, Israel J. Math. 177 (2010), 349-368.10.1007/s11856-010-0050-9Suche in Google Scholar

[16] LAUSTSEN, N. J.: On ring-theoretic (in)finiteness of Banach algebras of operators on Banach spaces, Glasg. Math. J. 45 (2003), 11-19.10.1017/S0017089502008947Suche in Google Scholar

[17] MBEKHTA, M.-MÜLLER, V.: On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147.10.4064/sm-119-2-129-147Suche in Google Scholar

Received: 2011-12-31
Accepted: 2012-8-20
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0014/pdf
Button zum nach oben scrollen