Startseite Limit Theorems for the Counting Function of Eigenvalues up to Edge in Covariance Matrices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Limit Theorems for the Counting Function of Eigenvalues up to Edge in Covariance Matrices

  • Junshan Xie EMAIL logo
Veröffentlicht/Copyright: 25. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the number of eigenvalues which fall into an interval for the complex sample covariance matrices. The central limit theorem and a moderate deviation principle are established when the endpoint of the interval is close to the edge of the spectrum. The proofs depend on the Four Moment Theorem about the local statistics of eigenvalues up to edge, and the rigidity theorem of the eigenvalues for sample covariance matrices.

References

[1] ANDERSON, G. W.-GUIONNET, A.-ZEITOUNI, O.: An Introduction to Random Matrices, Cambridge University Press, Cambridge, 2009.10.1017/CBO9780511801334Suche in Google Scholar

[2] BAI, Z. D.-SILVERSTEIN, J.: Spectral Analysis of Large Dimensional Random Matrices, Science Press, Beijing, 2006.Suche in Google Scholar

[3] COSTIN, O.-LEBOWITZ, J. L.: Gaussian Fluctuations in Random Matrices, Phys. Rev. Lett. 75 (1995), 69-72.10.1103/PhysRevLett.75.69Suche in Google Scholar PubMed

[4] DALLAPORTA, S.-VU, V.: A note on the central limit theorem for the eigenvalue counting function of wigner matrices, Electron. Commun. Probab. 16 (2011), 314-322.10.1214/ECP.v16-1634Suche in Google Scholar

[5] DEMBO, A.-GUIONNET, A.: Large Deviations Techniques and Applications, Springer, New York, 1998.10.1007/978-1-4612-5320-4Suche in Google Scholar

[6] DÖRING, H.-EICHELSBACHER, P.: Moderate deviations for the eigenvalue counting function of wigner matrices, (2011), arXiv:1104.0221v1.Suche in Google Scholar

[7] ERDÖS, L.: Universality of Wigner random matrices: a survey of recent results, Russian Math. Surveys 66 (2011), 507-626.10.1070/RM2011v066n03ABEH004749Suche in Google Scholar

[8] ERDÖS, L.-YAU, H. T.-YIN, J.: Bulk universality for generalized Wigner matrices, Probab. Theory Related Fields 151 (2011), 1-67.10.1007/s00440-010-0291-xSuche in Google Scholar

[9] GUSTAVSSON, J.: Gaussian fluctuations of eigenvalues in the GUE, Ann. Inst. Henri Poincaré Probab. Stat. 41 (2005), 151-178.10.1016/j.anihpb.2004.04.002Suche in Google Scholar

[10] HSU, P. L.: On the distribution of certain determinantal equations, Ann. Eugen. 9 (1939), 250-258.10.1111/j.1469-1809.1939.tb02212.xSuche in Google Scholar

[11] MARVCENKO, V.-PASTUR, L.: Distribution of eigenvalues for some sets of random matrices, Mat. Sb. 1 (1967), 457-483.10.1070/SM1967v001n04ABEH001994Suche in Google Scholar

[12] MEHTA, M. L.: Random Matrices (3rd ed.), Elsevier Academic Press, Singapore, 2004.Suche in Google Scholar

[13] O’ROURKE, S.: Gaussian fluctuations of eigenvalues in wigner random matrices, J. Stat. Phys. 138 (2010), 1045-1066.10.1007/s10955-009-9906-ySuche in Google Scholar

[14] PASTUR, L.-SHCHERBINA, M.: Bulk universality and related properties of Hermitian matrix models, J. Stat. Phys. 130 (2008), 205-250.10.1007/s10955-007-9434-6Suche in Google Scholar

[15] PILLAI, N. S.-YIN, J.: Universality of covariance matrices, (2011), arXiv:1110.2501v1.Suche in Google Scholar

[16] SOSHNIKOV, A.: Gaussian fluctuation for the number of particles in Airy, Bessel, Sine, and other determinantal random point fields, J. Stat. Phys. 100 (2000), 491-522.10.1023/A:1018672622921Suche in Google Scholar

[17] SU, Z. G.: Gaussian fluctuations in complex sample covariance matrices, Electron. J. Probab. 11 (2006), 1284-1320.10.1214/EJP.v11-378Suche in Google Scholar

[18] TAO, T.-VU, V.: Random matrices: Universality of local eigenvalue statistics up to the edge, Comm. Math. Phys. 298 (2010), 1-24.10.1007/s00220-010-1044-5Suche in Google Scholar

[19] TAO, T.-VU, V.: Random matrices: Universality of local eigenvalue statistics, Acta Math. 206 (2011), 127-204.10.1007/s11511-011-0061-3Suche in Google Scholar

[20] TAO, T.-VU, V.: Random variance matrices: Universality of local statistics of eigenvalues, Ann. Probab. 40 (2012), 1285-1315.10.1214/11-AOP648Suche in Google Scholar

[21] WANG, K.: Random covariance matrices: universality of local statistics of eigenvalues up to the edge, Random Matrices Theor. Appl. (2012), 1150005.10.1142/S2010326311500055Suche in Google Scholar

[22] WIGNER, E. P.: On the statistical distribution of the the widths and spacings of nuclear resonance elements, Math. Proc. Cambridge Philos. Soc. 47 (1951), 790-798.10.1017/S0305004100027237Suche in Google Scholar

[23] WIGNER, E. P.: On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67 (1958), 325-327.10.2307/1970008Suche in Google Scholar

[24] WISHART, J.: The genaralized product moment distribution in samples from a normal multivariate population, Biometrika 20 (1928), 32-52. 10.1093/biomet/20A.1-2.32Suche in Google Scholar

Received: 2011-12-3
Accepted: 2012-9-25
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 13.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0017/html
Button zum nach oben scrollen