Home Meromorphic Functions Sharing Pairs of Small Functions
Article
Licensed
Unlicensed Requires Authentication

Meromorphic Functions Sharing Pairs of Small Functions

  • Jilong Zhang EMAIL logo and Lianzhong Yang
Published/Copyright: March 25, 2015
Become an author with De Gruyter Brill

Abstract

In this paper, we investigate the relations between two meromorphic functions that share some pairs of small functions. In particular, we show that two meromorphic functions that share six pairs of small functions IM∗ must be linked by quasi-Möbius transformation. We also give some properties of two meromorphic functions sharing five pairs of values or small functions.

References

[1] CZUBIAK, T. P.-GUNDERSEN, G. G.: Meromorphic functions that share pairs of values, Complex Variables 34 (1997), 35-46.Search in Google Scholar

[2] GUNDERSEN, G. G.: Meromorphic functions that share three or four values, J. Lond. Math. Soc. (2) 20 (1979), 457-466.10.1112/jlms/s2-20.3.457Search in Google Scholar

[3] GUNDERSEN, G. G.: Meromorphic functions that share five pairs of values, Complex Var. Elliptic Equ. 56 (2011), 93-99.10.1080/17476930903394937Search in Google Scholar

[4] HAYMAN, W. K.: Meromorphic Functions, Clarendon Press, Oxford, 1964.Search in Google Scholar

[5] HU, P. C.-LI, P.-YANG, C. C.: Unicity of Meromorphic Mappings, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003.10.1007/978-1-4757-3775-2Search in Google Scholar

[6] ISHIZAKI, K.: Meromorphic functions sharing small functions, Arch. Math. (Basel) 77 (2011), 273-277.10.1007/PL00000491Search in Google Scholar

[7] LAINE, I.: Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin-New York, 1993.10.1515/9783110863147Search in Google Scholar

[8] LI, B. Q.: Uniqueness of entire functions sharing four small functions, Amer. J. Math. 119 (1997), 841-858.10.1353/ajm.1997.0025Search in Google Scholar

[9] LI, P.: Meromorphic functions that share four small functions, J. Math. Anal. Appl. 263 (2001), 316-326.10.1006/jmaa.2001.7607Search in Google Scholar

[10] LI, Y. H.-QIAO, J. Y.: The uniqueness of Meromorphic functions concerning small functions, Adv. Math. (China) 28 (1999), 87-88.Search in Google Scholar

[11] NEVANLINNA, R.: Le théorème de Picard-Borel et la théorie des fonctions meromorphes, Gauthiers-Villars, Paris, 1929.10.1007/BF02592680Search in Google Scholar

[12] REINDERS, M.: A new characterization of Gundersen’s example of two meromorphic functions sharing four values, Results Math. 24 (1993), 174-179.10.1007/BF03322327Search in Google Scholar

[13] YANG, C. C.-YI, H. X.: Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht, 2003. 10.1007/978-94-017-3626-8Search in Google Scholar

Received: 2012-6-7
Accepted: 2012-9-28
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0009/html
Scroll to top button