Startseite Free Power-Commutative Groupoids
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Free Power-Commutative Groupoids

  • Vesna Celakoska-Jordanova EMAIL logo
Veröffentlicht/Copyright: 25. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A groupoid is called power-commutative if every mono-generated subgroupoid is commutative. The class Pc of power-commutative groupoids is a variety. A description of free objects in this variety and their characterization by means of injective groupoids in Pc are obtained.

References

[1] BRUCK, R. H.: A Survey of Binary Systems, Springer-Verlag, Berlin-G¨otingen-Heidelberg, 195810.1007/978-3-662-35338-7Suche in Google Scholar

[2] CELAKOSKA-JORDANOVA,V.: Free groupoids in the class of power left and right idempotent groupoids, Int. J. Algebra 2 (2008), 451-461.Suche in Google Scholar

[3] ČUPONA, G.-CELAKOSKI, N.-ILIĆ, S.: Groupoid powers, Mat. Bilten 25 (2001), 5-12.Suche in Google Scholar

[4] ČUPONA, G.-CELAKOSKI, N.-ILIĆ, S.: On monoassociative groupoids, Mat. Bilten 26 (2002), 5-16.Suche in Google Scholar

[5] ČUPONA, G.-CELAKOSKI, N.-JANEVA, B.: Injective groupoids in some varieties of groupoids. In: Proc. of II Congress of SMIM 2000, 2003, pp. 47-55.Suche in Google Scholar

[6] ČUPONA, G.-ILIĆ, S.: Free groupoids with xn = x, II, NoviSad J. Math. 29 (1999), 147-154.Suche in Google Scholar

[7] KÜHR, J.- MUNDICI, D.: From free abelian groups to free abelian l -groups, Math. Slovaca 61 (2011), 439-450.10.2478/s12175-011-0022-5Suche in Google Scholar

[8] McKENZIE, R. N.-McNULTY, G. F.-TAYLOR, W. F.: Algebras, Lattices, Varieties, Wadsworth & Brooks/Cole, Monterey, CA, 1987 Suche in Google Scholar

Received: 2011-12-14
Accepted: 2012-8-28
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0003/html
Button zum nach oben scrollen