Startseite Technik Analysis of Doppler reactivity of SMART reactor core for hybrid fuel configurations of UO2, MOX and (Th/U)O2 using OpenMC
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of Doppler reactivity of SMART reactor core for hybrid fuel configurations of UO2, MOX and (Th/U)O2 using OpenMC

  • Y. Alzahrani , K. Mehboob EMAIL logo , F. A. Abolaban und H. Younis
Veröffentlicht/Copyright: 18. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the Doppler reactivity coefficient has been investigated for UO2, MOX, and (Th/U)O2 fuel types. The calculation has been carried out using the Monte Carlo method ( OpenMC). The effective multiplication factor keff has been evaluated for three materials with four different configurations without Integral Fuel Burnable Absorber (IFBA) rods and soluble boron. The results of MOX fuel, homogenous and heterogeneous thorium fuel configuration has been compared with the core of the reference fuel assembly (UO2). The calculation showed that the effective multiplication factor at 1 000 K was 1.26052, 1.14254, 1.22018 and 1.23771 for reference core, MOX, homogenous and heterogeneous configurations respectively. The results shows that reactivity has decreased with increasing temperature while the doppler reactivity coefficient remained negative. Moreover, the use of (Th/U)O2 homogenous and heterogeneous configuration had shown an improved response compared to the reference core at 600 K and 1 000 K. The doppler reactivity coefficient has been found as –8.98E-3 pcm/K, -0.8 655 pcmK for the homogenous and –8.854 pcm/K, -1.2253 pcm/K for the heterogeneous configuration. However, the pattern remained the same as for the reference core at other temperature points. MOX fuel has shown less response compared to the other fuel configuration because of the high resonance absorption coefficient of Plutonium. This study showed that the SMART reactor could be operated safely with investigated fuel and models.

Abstract

In dieser Studie wurde der Doppler-Reaktivitätskoeffizient für UO2-, MOX- und (Th/U)O2-Brennstoffelemente untersucht. Die Berechnung wurde mit der Monte-Carlo-Methode (OpenMC) durchgeführt. Der effektive Multiplikationsfaktor keff wurde für drei Materialien mit vier verschiedenen Konfigurationen ohne Integral Fuel Burnable Absorberstäbe und lösliches Bor ausgewertet. Die Ergebnisse von MOX-Brennstoff, homogener und heterogener Thorium-Brennstoffkonfiguration wurden mit dem Kern des Referenz-Brennelements (UO2) verglichen. Die Berechnung zeigte, dass der effektive Multiplikationsfaktor bei 1 000 K 1,26052, 1,14254, 1,22018 und 1,23771 für den Referenzkern, die MOX-, homogenen und heterogenen Konfigurationen beträgt. Die Ergebnisse zeigen, dass die Reaktivität mit steigender Temperatur abgenommen hat, während der Doppler-Reaktivitätskoeffizient negativ bleibt. Darüber hinaus zeigte die Verwendung der homogenen und heterogenen ( Th/U) O2-Konfiguration eine verbesserte Reaktion im Vergleich zum Referenzkern bei 600 K und 1 000 K. Der Doppler-Reaktivitätskoeffizient wurde als –8,98E-3 pcm/K, –0,8 655 pcm/K für die homogene und –8,854 pcm/K, –1,2 253 pcm/K für die heterogene Konfiguration ermittelt. Das Muster blieb jedoch das gleiche wie für den Referenzkern bei anderen Temperaturpunkten. MOX-Brennstoff zeigte aufgrund des hohen Resonanzabsorptionskoeffizienten von Plutonium eine geringere Reaktion im Vergleich zu den anderen Brennstoffkonfigurationen. Diese Studie zeigte, dass der SMART-Reaktor mit den untersuchten Brennstoffen und Modellen sicher betrieben werden kann.

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. KEP-17-135-38. The authors, therefore, gratefully acknowledge DSR technical and financial support.

References

1 IAEA: Advances in Small Modular Reactor Technology Developments A Supplement to IAEA Advanced Reactors Information System (ARIS), IAEA, Vienna, (2016)Suche in Google Scholar

2 Carelli, M. D.; Ingersoll, D. T.: Handbook of Small Modular Nuclear Reactors. Woodhead Publishing Series in Energy Number 64, (2015)Suche in Google Scholar

3 Johnston, F. J.; Halperin, J.; Stoughton, R. W.: The thermal neutron absorption cross-section of 233Th and the resonance integrals of 232Th, 233Th and 59Co, J. Nucl. Energy, Part A: Reactor Science, 11 (1960) 95–100, DOI:10.1016/0368-3265(60)90020-710.1016/0368-3265(60)90020-7Suche in Google Scholar

4 Kutty, T. R.; Banerjee, J.; Kumar, A.: Thermophysical Properties of Thoria-based Fuels. Springer, 2013Suche in Google Scholar

5 IAEA: Status and Advances in MOX fuel technology. Technical report series no 415, International Atomic Energy Agency, Vienna, 2003Suche in Google Scholar

6 Shen, S.; Yuan, Z.; Luo, X.: Measurement of 232Th neutron capture cross-sections in the energy range of 2.0 –5.0 MeV by using the neutron activation technique. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 476 (2020) 59–63, DOI:10.1016/j.nimb.2020.04.02810.1016/j.nimb.2020.04.028Suche in Google Scholar

7 Duderstadt, J. J.; Hamilton, L. J.: Nuclear Reactor Analysis. John Wiley & Sons, 1976Suche in Google Scholar

8 Shibata, K.; et al.: JENDL-4.0:A new library for nuclear science and engineering. Journal of Nuclear Science and Technology 48 (2011) 1–30, DOI:10.1080/18811248.2011.971167510.1080/18811248.2011.9711675Suche in Google Scholar

9 IAEA: Thorium fuel cycle – Potential benefits and challenges. IAEA-TECDOC-1450, International Atomic Energy Agency, Vienna, 2005Suche in Google Scholar

10 Dobuchi, N.; Takeda, S.; Kitada, T.: Study on the relation between Doppler reactivity coefficient and resonance integrals of Thorium and Uranium in PWR fuels. Annals of Nuclear Energy 90 (2016) 191–194, DOI:10.1016/j.anucene.2015.11.01810.1016/j.anucene.2015.11.018Suche in Google Scholar

11 Rokhmadi, R.; Suwoto, S.; Zuhair, Z.: Analysis of Doppler Reactivity Coefficient on the Typical PWR-1000 Reactor with Mox Fuel. ICo-NETS Conference Proceedings, 2016, DOI:10.18502/ken.v1i1.47310.18502/ken.v1i1.473Suche in Google Scholar

12 Zuhair, Z.; Suwoto, S.; Irianto, I. D.: Analysis on the calculation of doppler reactivity coefficient for TRISO particle of high temperature reactor. Jurnal Pengembangan Energi Nuklir 13 (2011) 1–8Suche in Google Scholar

13 Thilagamet, L.; et al.: Doppler Coefficient of Reacitvity – Benchmark Calculations for different enrichtments of UO2. Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15–19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007)Suche in Google Scholar

14 Dobuchi, N.; Takeda, S.; Kitada, T.: Study on the relation between Doppler reactivity coefficient and resonance integrals of Thorium and Uranium in PWR fuels. Annals of Nuclear Energy 90 (2016) 191–194, DOI:10.1016/j.anucene.2015.11.01810.1016/j.anucene.2015.11.018Suche in Google Scholar

15 Akbari-Jeyhouni, R.; et al.: The utilization of thorium in Small Modular Reactors – Part I: Neutronic assessment. Annals of Nuclear Energy 120 (2018) 422–430, DOI:10.1016/j.anucene.2018.06.01310.1016/j.anucene.2018.06.013Suche in Google Scholar

16 Al-Zahrani, Y.; A.; Mehboob, K.; Mohamad, D.; Alhawsawi, A.; Abolaban, F.: Neutronic Performance of Fully Ceramic Microencapsulated of Uranium Oxycarbide and Uranium Nitride Composite Fuel in SMR. Annals of Nuclear Energy 155 (2021) 108152, DOI:10.1016/j.anucene.2021.10815210.1016/j.anucene.2021.108152Suche in Google Scholar

17 Mehboob, K.; Aljohani, M. S.: Derivation of radiological source term of Korean Design System-Integrated Modular Advanced ReacTor (SMART). Annals of Nuclear Energy 119 (2018) 148–161, DOI:10.1016/j.anucene.2018.04.04410.1016/j.anucene.2018.04.044Suche in Google Scholar

18 Kim, S.-H.; et al.: Design Verification Program of SMART. Paper 1047, GENES4/ANP2003, Sep. 15–19, 2003, Kyoto, JapanSuche in Google Scholar

19 Kim, Y. I.; Bae, Y.; Chung, Y. J.; Kim, K. K.: CFD simulation for thermal mixing of a SMART flow mixing header assembly. Annals of Nuclear Energy 85 (2015) 357–370, DOI:10.1016/j.anucene.2015.05.01910.1016/j.anucene.2015.05.019Suche in Google Scholar

20 Kim, Y. I.; Bae, Y.; Chung, Y. J.; Kim, K. K.: CFD simulation for thermal mixing of a SMART flow mixing header assembly, Annals of Nuclear Energy 85 (2015) 357–370, DOI:10.1016/j.anucene.2015.05.01910.1016/j.anucene.2015.05.019Suche in Google Scholar

21 KAERI: System-integrated modular advanced reactor (SMART). Annex I, in: IAEA: Status of innovative small and medium sized reactor design 2005. IAEA-TECDOC-1485, International Atomic Energy Agency, Vienna, 2006Suche in Google Scholar

22 KAERI: Basic Design report of SMART. KAERI/TR-2142/2002. Korea Atomic Energy Research Institute, Taejon (Republic of Korea,), 2002Suche in Google Scholar

23 Romano, P. K.; Horelik, N. E.; Herman, B. R.; Nelson, A. G.; Forget, B.; Smith, K.: OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development. Annals of Nuclear Energy 82 (2015) 90–97, DOI:10.1016/j.anucene.2014.07.04810.1016/j.anucene.2014.07.048Suche in Google Scholar

24 Erradi, L.; Santamarina, A.; Litaize, O.: The reactivity temperature coefficient analysis in light water moderated UO2 and UO2-PuO2 Lattices. Nucl. Sci. Eng. 144 (2017) 47–73, DOI:10.13182/NSE144-4710.13182/NSE144-47Suche in Google Scholar

Received: 2020-09-07
Published Online: 2021-06-18
Published in Print: 2021-06-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/kern-2020-0063/pdf
Button zum nach oben scrollen