Home Technology Simulation of turbulent mixing rate in simulated subchannels of a reactor rod bundle
Article
Licensed
Unlicensed Requires Authentication

Simulation of turbulent mixing rate in simulated subchannels of a reactor rod bundle

  • M. P. Sharma EMAIL logo and A. Moharana
Published/Copyright: June 18, 2021
Become an author with De Gruyter Brill

Abstract

Subchannel analysis codes are widely used for the thermal-hydraulic design of nuclear reactor rod bundle. The effectiveness of subchannel analysis codes depends on turbulent mixing between these subchannels. Turbulent mixing has no direct contribution to the axial mass flow rate through subchannel but it will cause exchange of momentum and energy between the neighboring subchannels. Thus, it is important to evaluate the turbulent mixing coefficient for reactor rod bundle as it is a significant factor in the lateral energy and momentum equation for subchannel analysis codes like COBRA IIIC, COBRA-IV and MATRA LMR-FB.

With the rapid developments in computational fluid dynamics and computer performance, three-dimensional analyses of turbulent flows occurring in the nuclear rod bundle have become more prominent. Several numerical analyses have already been attempted to investigate the flow behavior in rod bundles of different reactors. Much of these are dedicated to find out the structure of turbulence in rod bundle but a few analyses has been done to evaluate the magnitude of the turbulent mixing coefficient. In view of this, CFD analyses were carried out to determine the turbulent mixing coefficient in the simulated sub-channels of the reactor rod bundle. Previous studies on the structure of turbulence reveals that it is highly anisotropic. Hence, the Reynolds Stress Model (RSM), finer mesh and near wall distance ( y + ≤ 2) is required to capture turbulent mixing phenomena. The validation of results is done by comparing with subchannel mixing experiments.

Abstract

Unterkanal-Analysecodes werden für die thermohydraulische Auslegung von Brennstabbündeln verwendet. Dabei muss der Analysecode die turbulente Vermischung in den Unterkanälen korrekt abbilden. Die turbulente Vermischung hat keinen direkten Beitrag zum axialen Massenstrom durch den Unterkanal, bewirkt jedoch einen Impuls- und Energieaustausch zwischen den benachbarten Unterkanälen. Daher ist es wichtig, den turbulenten Mischungskoeffizienten für das Brennstabbündel zu bewerten, da er ein wesentlicher Faktor in der lateralen Energie- und Impulsgleichung für Subkanalanalysecodes wie COBRA IIIC, COBRA-IV und MATRA LMR-FB ist.

Mit den rasanten Entwicklungen in der rechnergestützten Fluiddynamik und der Computerleistung sind dreidimensionale Analysen turbulenter Strömungen im Kernstabbündel stärker in den Vordergrund gerückt. Es wurden bereits mehrere numerische Analysen durchgeführt, um das Fließverhalten in Stabbündeln verschiedener Reaktoren zu untersuchen. Viele davon widmen sich der Ermittlung der Turbulenzstruktur im Stabbündel. Es wurden auch einige Analysen durchgeführt, um die Größe des turbulenten Mischungskoeffizienten zu bewerten. In diesem Beitrag werden CFD-Analysen beschrieben, bei denen turbulente Mischungskoeffizienten in den simulierten Unterkanälen des Brennstabbündels bestimmt werden. Frühere Studien zur Struktur von Turbulenzen haben gezeigt, dass diese stark anisotrop sind. Daher ist das Reynolds-Spannungsmodell (RSM), ein feineres Netz und ein wandnaher Abstand ( y + ≤ 2) erforderlich, um turbulente Mischungsphänomene zu erfassen. Die Validierung der Ergebnisse erfolgt durch Vergleich mit ausgewählten Experimenten.

Nomenclature

A

flow area (m2)

Dh

hydraulic diameter (m)

d

rod diameter (m)

Re

Reynolds number

S

gap (m)

t

time

UU

Reynold stress in x

VV

Reynold stress in y

WW

Reynold stress in z

W’

turbulent mixing rate (Kg/m-s)

Subscript

i,j,k

subchannel identifier

1,2,3

subchannel identifier

cfd

computation fluid dynamics

exp

experiment

avg

average

References

1 Lahey, Jr., R.T.; Moody, F. J.: The Thermal Hydraulics of Boiling Water Nuclear Reactor. 2nd ed., ANS, La Grange Park, 1993Search in Google Scholar

2 Rowe, D. S.: Crossflow Mixing Between Parallel Flow Channels During Boiling -Part I – COBRA-Computer Program for Coolant Boiling in Rod Arrays. BNWL-371, Part 1, 1967, DOI:10.2172/441037510.2172/4410375Search in Google Scholar

3 Sharma, M. P.; Nayak A. K.: Determination of turbulent mixing rate for single-phase flow in simulated subchannels of a natural-circulation pressure tube-type BWR. Nuclear Science and Engineering 180 (2015) 172–181, DOI:10.13182/NSE14-10210.13182/NSE14-102Search in Google Scholar

4 Rehme, K.: The Structure of Turbulent Flow Through Rod Bundles. Nuclear Engineering and Design, 99, pp. 141–154, 1987, DOI:10.1016/0029-5493(87)90116-610.1016/0029-5493(87)90116-6Search in Google Scholar

5 Rowe, D. W.; Angel, C.W.: Cross flow mixing between parallel flow channel during boiling, Part III: Effect of spacer on mixing between two channels. Bettelle Nortwest, BNWL-371 1969, DOI:10.2172/482378210.2172/4823782Search in Google Scholar

6 Singh, K. S.: Air-Water Turbulent Mixing in Simulated Rod Bundle Geometries. Ph. D. Thesis, Department of Chemical Engineering, University of Windsor, 197210.1139/tcsme-1972-0011Search in Google Scholar

7 Sadatomi, M.; Kawahara, A.; Kano, K.; Sumi, Y.: Single and two-phase of turbulent mixing rate between adjacent subchannels in a vertical 2 × 3 rod array channel. International Journal of Multiphase Flow 30 (2004) 481–498, DOI:10.1016/j.ijmultiphaseflow.2004.03.00110.1016/j.ijmultiphaseflow.2004.03.001Search in Google Scholar

8 Cheng, X.; Tak, N. I.: CFD analysis of thermal hydraulic behavior of heavy liquid metals in sub-channels. Nuclear Engineering and Design 236 (2006) 1874–1885, DOI:10.1016/j.nucengdes.2006.02.00110.1016/j.nucengdes.2006.02.001Search in Google Scholar

9 Tóth, S.; Aszodi, A.: CFD analysis of flow field in a triangular rod bundle. Nuclear Engineering and Design 240 (2010) 352–363, DOI:10.1016/j.nucengdes.2008.08.02010.1016/j.nucengdes.2008.08.020Search in Google Scholar

10 Trupp, A. C.; Azad, R. S.: The structure of turbulent flow in triangular array rod bundles. Nuclear Engineering and Design 32 (1975) 47–84, , DOI:10.1016/0029-5493(75)90090-410.1016/0029-5493(75)90090-4Search in Google Scholar

11 Lee, C. M.; Choi, Y. D.: Comparison of thermo-hydraulic performances of large scale vortex flow (LSVF) and small scale vortex flow (SSVF) mixing vanes in 17 × 17 nuclear rod bundle. Nuclear Engineering and Design 237 (2007) 2322–2331, DOI:10.1016/j.nucengdes.2007.04.01110.1016/j.nucengdes.2007.04.011Search in Google Scholar

12 Liu, C. C.; Ferng, Y.M.: Numerically simulating the thermal hydraulic characteristics within the fuel rod bundle using CFD methodology. Nuclear Engineering and Design 240 (2010) 3078–3086, DOI:10.1016/j.nucengdes.2010.05.02110.1016/j.nucengdes.2010.05.021Search in Google Scholar

13 Shen, D.; Liu, X.; Cheng, X.: A new turbulent mixing modelling approach for sub-channel analysis code. Annals of Nuclear Energy 121 (2018) 194–202, DOI:10.1016/j.anucene.2018.07.02310.1016/j.anucene.2018.07.023Search in Google Scholar

14 Vogt, B.: CFD analysis of mixing coefficients in rod bundles. International Students Workshop on High Performance Light Water Reactors, Karlsruhe, Germany March 31 to April 3, 2008Search in Google Scholar

15 Holman, B.: A Study on the Merits of Using Computational Fluid Dynamics to Predict Thermal-Hydraulic Properties in Rod Bundles. Master of Science thesis, Nuclear Engineering, Raleigh, North Carolina, 2012Search in Google Scholar

Received: 2020-12-25
Published Online: 2021-06-18
Published in Print: 2021-06-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2020-0089/html
Scroll to top button