Abstract
Recent studies have revealed the complex structure of nerve signals in axons. Besides the electrical signal, mechanical and thermal effects are also detected in many experimental studies. In this paper, the mathematical models of heat generation are analysed within the framework of a general model derived earlier by the authors. The main mechanisms of heat generation are seemingly Joule heating and endo- and exothermic reactions. The concept of internal variables permits to model the heat relaxation typical to these reactions. The general energy balance of the whole signal is analysed based on physical mechanisms responsible for emerging the components of a signal which constitutes a wave ensemble. The novelty of this study is in describing the energy for all the components of the wave ensemble. Some open questions are listed for further studies.
Funding source: Eesti Teadusagentuur
Award Identifier / Grant number: IUT 33-24
Funding statement: This research was supported by the Estonian Research Council projects IUT 33-24 and PRG 1227.
References
[1] A. V. Hill, A closer analysis of the heat production of nerve, Proc. R. Soc. London. Ser. B, Contain. Pap. A Biol. Character. 111 (1932), no. 770, 106–164.10.1098/rspb.1932.0047Suche in Google Scholar
[2] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), no. 4, 500–544.10.1113/jphysiol.1952.sp004764Suche in Google Scholar
[3] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), no. 6, 445–466.10.1016/S0006-3495(61)86902-6Suche in Google Scholar
[4] J. R. Clay, Axonal excitability revisited, Prog. Biophys. Mol. Biol. 88 (2005), no. 1, 59–90.10.1016/j.pbiomolbio.2003.12.004Suche in Google Scholar PubMed
[5] D. Debanne, E. Campanac, A. Bialowas, E. Carlier and G. Alcaraz, Axon physiology, Physiol. Rev. 91 (2011), no. 2, 555–602.10.1152/physrev.00048.2009Suche in Google Scholar PubMed
[6] A. Watanabe, Mechanical, thermal, and optical changes of the nerve membrane associated with excitation, Jpn. J. Physiol. 36 (1986), 625–643.10.2170/jjphysiol.36.625Suche in Google Scholar PubMed
[7] T. Heimburg, The important consequences of the reversible heat production in nerves and the adiabaticity of the action potential, preprint (2020). arXiv:2002.06031v1 [physics.bio-ph].Suche in Google Scholar
[8] J. Engelbrecht, K. Tamm and T. Peets, On mechanisms of electromechanophysiological interactions between the components of nerve signals in axons, Proc. Estonian Acad. Sci. 69 (2020), no. 2, 81–96.10.3176/proc.2020.2.03Suche in Google Scholar
[9] J. Engelbrecht, K. Tamm and T. Peets, Modeling of complex signals in nerve fibers, Med. Hypotheses 120 (2018), 90–95.10.1016/j.mehy.2018.08.021Suche in Google Scholar PubMed
[10] J. Engelbrecht, K. Tamm and T. Peets, Criteria for modelling wave phenomena in complex systems: the case of signals in nerves, Proc. Estonian Acad. Sci. 68 (2019), no. 3, 276–283.10.3176/proc.2019.3.05Suche in Google Scholar
[11] J. Engelbrecht, K. Tamm and T. Peets, Continuum mechanics and signals in nerves, Proc. Estonian Acad. Sci. 70 (2021), no. 1, 3–18.10.3176/proc.2021.1.02Suche in Google Scholar
[12] P. C. Nelson, M. Radosavljevic and S. Bromberg, Biological Physics: Energy, Information, Life, W. H. Freeman and Company, New York, NY, 2003.Suche in Google Scholar
[13] P. C. Bressloff, Waves in Neural Media, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer New York, New York, NY, 2014.10.1007/978-1-4614-8866-8Suche in Google Scholar
[14] C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981), no. 1, 193–213.10.1016/S0006-3495(81)84782-0Suche in Google Scholar
[15] T. Heimburg and A. D. Jackson, On soliton propagation in biomembranes and nerves, Proc. Natl. Acad. Sci. USA 102 (2005), no. 28, 9790–9795.10.1073/pnas.0503823102Suche in Google Scholar PubMed PubMed Central
[16] T. Heimburg and A. D. Jackson, On the action potential as a propagating density pulse and the role of anesthetics, Biophys. Rev. Lett. 02 (2007), no. 01, 57–78.10.1142/S179304800700043XSuche in Google Scholar
[17] M. M. Rvachev, On axoplasmic pressure waves and their possible role in nerve impulse propagation, Biophys. Rev. Lett. 5 (2010), no. 2, 73–88.10.1142/S1793048010001147Suche in Google Scholar
[18] E. V. Vargas, A. Ludu, R. Hustert, P. Gumrich, A. D. Jackson and T. Heimburg, Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve, Biophys. Chem. 153 (2011), no. 2-3, 159–167.10.1016/j.bpc.2010.11.001Suche in Google Scholar PubMed
[19] F. Contreras, F. Ongay, O. Pavón and M. Aguero, Non-topological solitons as traveling pulses along the nerve, Int. J. Mod. Nonlinear Theory Appl. 02 (2013), no. 04, 195–200.10.4236/ijmnta.2013.24027Suche in Google Scholar
[20] H. Barz, A. Schreiber and U. Barz, Impulses and pressure waves cause excitement and conduction in the nervous system, Med. Hypotheses 81 (2013), no. 5, 768–772.10.1016/j.mehy.2013.07.049Suche in Google Scholar PubMed
[21] R. Appali, S. Petersen and U. van Rienen, A comparision of Hodgkin-Huxley and soliton neural theories, Adv. Radio Sci. 8 (2010), 75–79.10.5194/ars-8-75-2010Suche in Google Scholar
[22] B. Drukarch, H. A. Holland, M. Velichkov, J. J. G. Geurts, P. Voorn, G. Glas, et al., Thinking about the nerve impulse: A critical analysis of the electricity-centered conception of nerve excitability, Prog. Neurobiol. 169 (2018), 172–185.10.1016/j.pneurobio.2018.06.009Suche in Google Scholar PubMed
[23] J. Engelbrecht, T. Peets and K. Tamm, Electromechanical coupling of waves in nerve fibres, Biomech. Model. Mechanobiol. 17 (1771–1783), no. 6, 2018.10.1007/s10237-018-1055-2Suche in Google Scholar PubMed
[24] J. Engelbrecht, K. Tamm and T. Peets, Internal variables used for describing the signal propagation in axons, Contin. Mech. Thermodyn. 32 (2020), no. 6, 1619–1627.10.1007/s00161-020-00868-2Suche in Google Scholar
[25] K. Tamm, J. Engelbrecht and T. Peets, Temperature changes accompanying signal propagation in axons, J. Non-Equilibrium Thermodyn. 44 (2019), no. 3, 277–284.10.1515/jnet-2019-0012Suche in Google Scholar
[26] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), no. 10, 2061–2070.10.1109/JRPROC.1962.288235Suche in Google Scholar
[27] J. Engelbrecht, T. Peets, K. Tamm, M. Laasmaa and M. Vendelin, On the complexity of signal propagation in nerve fibres, Proc. Estonian Acad. Sci. 67 (2018), no. 1, 28–38.10.3176/proc.2017.4.28Suche in Google Scholar
[28] A. El Hady and B. B. Machta, Mechanical surface waves accompany action potential propagation, Nat. Commun. 6 (2015), 6697.10.1038/ncomms7697Suche in Google Scholar PubMed
[29] H. Chen, D. Garcia-Gonzalez and A. Jérusalem, Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation, Phys. Rev. E 99 (2019), no. 3, 032406.10.1103/PhysRevE.99.032406Suche in Google Scholar PubMed
[30] H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. 1 (1948), no. 2, 93–122.10.1152/jappl.1948.1.2.93Suche in Google Scholar PubMed
[31] K. Kaufmann, Action Potentials and Electromechanical Coupling in the Macroscopic Chiral Phospholipid Bilayer. Caruaru, 1989.Suche in Google Scholar
[32] D. G. Margineanu and E. Schoffeniels, Molecular events and energy changes during the action potential, Proc. Natl. Acad. Sci. 74 (1977), no. 9, 3810–3813.10.1073/pnas.74.9.3810Suche in Google Scholar PubMed PubMed Central
[33] C. W. Hall, Laws and Models: Science, Engineering, and Technology, CRC Press, Boca Raton, 1999.10.1201/9781420050547Suche in Google Scholar
[34] Y. Shu, A. Duque, Y. Yu, B. Haider and D. A. McCormick, Properties of action-potential initiation in neocortical pyramidal cells: Evidence from whole cell axon recordings, J. Neurophysiol. 97 (2007), no. 1, 746–760.10.1152/jn.00922.2006Suche in Google Scholar PubMed
[35] B. P. Bean, The action potential in mammalian central neurons, Nat. Rev. Neurosci. 8 (2007), no. 6, 451–465.10.1038/nrn2148Suche in Google Scholar
[36] C. Y. M. Huang and M. N. Rasband, Axon initial segments: structure, function, and disease, Ann. N.Y. Acad. Sci. 1420 (2018), no. 1, 46–61.10.1111/nyas.13718Suche in Google Scholar
[37] A. L. Hodgkin and A. F. Huxley, Resting and action potentials in single nerve fibres, J. Physiol. 104 (1945), 176–195.10.1113/jphysiol.1945.sp004114Suche in Google Scholar
[38] I. Tasaki, A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation, Physiol. Chem. Phys. Med. NMR 20 (1988), no. 4, 251–268.Suche in Google Scholar
[39] Y. Yang, X. W. Liu, H. Wang, H. Yu, Y. Guan, S. Wang, et al., Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion, ACS Nano 12 (2018), no. 5, 4186–4193.10.1021/acsnano.8b00867Suche in Google Scholar
[40] J. Engelbrecht, T. Peets and K. Tamm, Electromechanical coupling of waves in nerve fibres, Biomech. Model. Mechanobiol. 17 (1771–1783), no. 6, 2018.10.1007/s10237-018-1055-2Suche in Google Scholar
[41] H. J. Lee, Y. Jiang and J. X. Cheng, Label-free optical imaging of membrane potential, Curr. Opin. Biomed. Eng. 12 (2019), 118–125.10.1016/j.cobme.2019.11.001Suche in Google Scholar
[42] A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003.10.1142/5238Suche in Google Scholar
[43] B. C. Abbott, A. V. Hill and J. V. Howarth, The positive and negative heat production associated with a nerve impulse, Proc. R. Soc. B Biol. Sci. 148 (1958), no. 931, 149–187.10.1098/rspb.1958.0012Suche in Google Scholar
[44] J. V. Howarth, R. D. Keynes and J. M. Ritchie, The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres, J. Physiol. 194 (1968), no. 3, 745–793.10.1113/jphysiol.1968.sp008434Suche in Google Scholar
[45] J. M. Ritchie and R. D. Keynes, The production and absorption of heat associated with electrical activity in nerve and electric organ, Q. Rev. Biophys. 18 (1985), no. 04, 451.10.1017/S0033583500005382Suche in Google Scholar
[46] A. C. Downing, R. W. Gerard and A. V. Hill, The heat production of nerve, Proc. R. Soc. B Biol. Sci. 100 (1926), no. 702, 223–251.10.1098/rspb.1926.0044Suche in Google Scholar
[47] R. de A. Nogueira and E. A. Conde Garcia, A theoretical study on heat production in squid giant axon, J. Theor. Biol. 104 (1983), no. 1, 43–52.10.1016/0022-5193(83)90400-9Suche in Google Scholar
[48] J. V. Howarth, J. M. Ritchie and D. Stagg, The initial heat production in garfish olfactory nerve fibres, Proc. R. Soc. London. Ser. B. Biol. Sci. 205 (1979), no. 1160, 347–367.10.1098/rspb.1979.0069Suche in Google Scholar
[49] I. Tasaki and P. M. Byrne, Heat production associated with a propagated impulse in Bullfrog myelinated nerve fibers, Jpn. J. Physiol. 42 (1992), no. 5, 805–813.10.2170/jjphysiol.42.805Suche in Google Scholar PubMed
[50] A. C. L. De Lichtervelde, J. P. De Souza and M. Z. Bazant, Heat of nervous conduction: A thermodynamic framework, Phys. Rev. E 101 (2020), 2.10.1103/PhysRevE.101.022406Suche in Google Scholar PubMed
[51] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilibrium Thermodyn. 19 (1994), no. 3, 217–249.10.1515/jnet.1994.19.3.217Suche in Google Scholar
[52] J. V. Howarth, R. D. Keynes, J. M. Ritchie and A. von Muralt, The heat production associated with the passage of a single impulse in pike olfactory nerve fibres, J. Physiol. 249 (1975), no. 2, 349–368.10.1113/jphysiol.1975.sp011019Suche in Google Scholar PubMed PubMed Central
[53] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger and M. P. Scott, Transport of ions and small molecules across cell membranes, Mol. Cell Biol. (2004), 245–300.Suche in Google Scholar
[54] T. Heimburg and A. D. Jackson, Thermodynamics of the Nervous Impulse, in: Nag Kaushik (ed.), Structure and Dynamics of Membranous Interfaces, John Wiley & Sons (2008).10.1002/9780470388495.ch12Suche in Google Scholar
[55] S. Terakawa, Potential-dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon, J. Physiol. 369 (1985), no. 1, 229–248.10.1113/jphysiol.1985.sp015898Suche in Google Scholar PubMed PubMed Central
[56] J. K. Mueller and W. J. Tyler, A quantitative overview of biophysical forces impinging on neural function, Phys. Biol. 11 (2014), no. 5, 051001.10.1088/1478-3975/11/5/051001Suche in Google Scholar PubMed
[57] L. Deseri, M. D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes, Contin. Mech. Thermodyn. 20 (2008), no. 5, 255–273.10.1007/s00161-008-0081-1Suche in Google Scholar
[58] M. J. Ablowitz, Nonlinear Dispersive Waves, Cambridge University Press, Cambridge, 2011.10.1017/CBO9780511998324Suche in Google Scholar
[59] H. Berg and K. Blagoev, Perspectives on working at the physics-biology interface, Phys. Biol. 11 (2014), no. 5, 050301.10.1088/1478-3975/11/5/050301Suche in Google Scholar PubMed
[60] D. Gavaghan, A. Garny, P. K. Maini and P. Kohl, Mathematical models in physiology, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006), no. 1842, 1099–1106.10.1098/rsta.2006.1757Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Non-Equilibrium Molecular Dynamics Study of the Influence of Branching on the Soret Coefficient of Binary Mixtures of Heptane Isomers
- On the Physical Background of Nerve Pulse Propagation: Heat and Energy
- Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows
- Continuum Modeling Perspectives of Non-Fourier Heat Conduction in Biological Systems
- The Maximum Power Cycle Operating Between a Heat Source and Heat Sink with Finite Heat Capacities
- Size Effects and Beyond-Fourier Heat Conduction in Room-Temperature Experiments
- The Role of Internal Irreversibilities in the Performance and Stability of Power Plant Models Working at Maximum ϵ-Ecological Function
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Non-Equilibrium Molecular Dynamics Study of the Influence of Branching on the Soret Coefficient of Binary Mixtures of Heptane Isomers
- On the Physical Background of Nerve Pulse Propagation: Heat and Energy
- Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows
- Continuum Modeling Perspectives of Non-Fourier Heat Conduction in Biological Systems
- The Maximum Power Cycle Operating Between a Heat Source and Heat Sink with Finite Heat Capacities
- Size Effects and Beyond-Fourier Heat Conduction in Room-Temperature Experiments
- The Role of Internal Irreversibilities in the Performance and Stability of Power Plant Models Working at Maximum ϵ-Ecological Function