Startseite Non-Equilibrium Molecular Dynamics Study of the Influence of Branching on the Soret Coefficient of Binary Mixtures of Heptane Isomers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-Equilibrium Molecular Dynamics Study of the Influence of Branching on the Soret Coefficient of Binary Mixtures of Heptane Isomers

  • Xiaoyu Chen , Ruquan Liang EMAIL logo , Lichun Wu und Gan Cui
Veröffentlicht/Copyright: 11. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Equimolar mixtures composed of isomers were firstly used to investigate the molecular branching effect on thermal diffusion behavior, which was not disturbed by factors of molecular mass and composition in this work. Eight heptane isomers, including n-heptane, 2-methylhexane, 3-methylhexane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane and 3-ethylpentane, were chosen as the researched mixtures. A non-equilibrium molecular dynamics (NEMD) simulation with enhanced heat exchange (eHEX) algorithm was applied to calculate the Soret coefficient at T = 303.15 K and P = 1.0 atm. An empirical correlation based on an acentric factor was proposed and its calculation coincides with the simulated results, which showed the validity of the NEMD simulation. It is demonstrated that the isomer with higher acentric factor has a stronger thermophilic property and tends to migrate to the hot region in the heptane isomer mixture, and the extent of thermal diffusion is proportional to the difference between the acentric factors of the isomers.

Award Identifier / Grant number: 51976087

Award Identifier / Grant number: 51676031

Funding statement: The present work is supported financially by the National Natural Science Foundation of China under grant numbers 51976087 and 51676031.

References

[1] C. Ludwig, Diffusion Zwischen Ungleich Erwarten Orten Gleich Zusammengestzter Losungen, Sitz.ber. - Akad. Wiss. Wien, Math.-Nat. Kl. 20 (1856), 539.Suche in Google Scholar

[2] C. Soret, Sur l’état d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homohéne dont deux parties sont portées à des températures différentes, Arch. Sci. Phys. Nat. 2 (1879), 48–61.Suche in Google Scholar

[3] L. Keulen, L. V. V. D. Ham, N. J. M. Kuipers, J. H. Hanemaaijer, T. J. H. Vlugt and S. Kjelstrup, Membrane distillation against a pressure difference, J. Membr. Sci. 524 (2017), 151–162.10.1016/j.memsci.2016.10.054Suche in Google Scholar

[4] A. P. Bregulla, A. Wurger, K. Gunther, M. Mertig and F. Cichos, Thermo-osmotic flow in thin films, Phys. Rev. Lett. 116 (2016), 118303.10.1103/PhysRevLett.116.188303Suche in Google Scholar PubMed

[5] G. M. Oliveira, V. S. Zanuto, G. Flizikowski, N. M. Kimura, A. R. Sampaio, A. Novatski, et al., Soret effect in lyotropic liquid crystal in the isotropic phase revealed by time-resolved thermal lens, J. Mol. Liq. 312 (2020), 113381.10.1016/j.molliq.2020.113381Suche in Google Scholar

[6] P. Ghosh, Thermodiffusion-induced traveling and shock waves in a colloidal solution, Phys. Rev. E 102 (2020), 012606.10.1103/PhysRevE.102.012606Suche in Google Scholar PubMed

[7] S. S. Es-haghi and M. Cakmak, Thermal diffusion in polymer solutions: approaching spinodal, Polymer 109 (2017), 278–286.10.1016/j.polymer.2016.12.065Suche in Google Scholar

[8] A. Salditt, L. M. R. Keil, D. P. Horning, C. B. Mast, G. F. Joyce and D. Braun, Thermal habitat for RNA amplification and accumulation, Phys. Rev. Lett. 125 (2020), 048104.10.1103/PhysRevLett.125.048104Suche in Google Scholar PubMed

[9] M. Morasch, J. Liu, C. F. Dirscherl, A. Ianeselli, A. Kuhnlein, K. L. Vay, et al., Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules, Nat. Chem. 11 (2019), 779–788.10.1038/s41557-019-0299-5Suche in Google Scholar PubMed

[10] J. H. Chen, D. T. Georgi and H. H. Liu, Electromagnetic thermal stimulation of shale reservoirs for petroleum production, J. Nat. Gas Sci. Eng. 59 (2018), 183–192.10.1016/j.jngse.2018.08.029Suche in Google Scholar

[11] B. Seta, J. Gavalda, M. M. Bou-Ali, X. Ruiz and C. Santamaria, Determining diffusion, thermodiffusion and Soret coefficients by the thermogravitational technique in binary mixtures with optical digital interferometry analysis, Int. J. Heat Mass Transf. 147 (2020), 118935.10.1016/j.ijheatmasstransfer.2019.118935Suche in Google Scholar

[12] B. Seta, A. Errarte, D. Dubert, J. Gavalda, M. M. Bou-Ali and X. Ruiz, Gravitational stability analysis on double diffusion convection in ternary mixtures, Acta Astronaut. 160 (2019), 442–450.10.1016/j.actaastro.2019.04.020Suche in Google Scholar

[13] M. Braibanti, P. A. Artola, P. Baaske, H. Baraller, J. P. Bazile, M. M. Bou-Ali, et al., European Space Agency experiments on thermodiffusion of fluid mixtures in space, Eur. Phys. J. E 42 (2019), 86.10.1140/epje/i2019-11849-0Suche in Google Scholar PubMed

[14] E. Bringuier and A. Bourdon, Colloid thermophoresis as a non-proportional response, J. Non-Equilib. Thermodyn. 32 (2007), 221–229.10.1515/JNETDY.2007.014Suche in Google Scholar

[15] X. Y. Chen, R. Q. Liang, Y. Wang, Z. Q. Xia, L. C. Wu, Y. Liang, et al., A theoretical study of the temperature gradient effect on the Soret coefficient in n-pentane/n-decane mixtures using non-equilibrium molecular dynamics, J. Non-Equilib. Thermodyn. 45 (2020), 319–332.10.1515/jnet-2019-0082Suche in Google Scholar

[16] S. Srinivasan and M. Z. Saghir, Computational evaluation of micro-scale and macro-scale error source in a thermodiffusive cell, J. Comput. Sci. 5 (2014), 765–776.10.1016/j.jocs.2013.11.003Suche in Google Scholar

[17] G. Galliero, H. Bataller, J. P. Bazile, J. Diaz, F. Croccolo, H. Hoang, et al., Thermodiffusion in multicomponent n-alkane mixtures, npj Microgravity 3 (2017), 20.10.1038/s41526-017-0026-8Suche in Google Scholar PubMed PubMed Central

[18] P. Polyakov, J. Luettmer-Strathmann and S. Wiegand, Study of the thermal diffusion behavior of alkane/benzene mixtures by thermal diffusion forced Rayleigh scattering experiments and lattice model calculations, J. Phys. Chem. B 110 (2006), 26215–26224.10.1021/jp065825vSuche in Google Scholar PubMed

[19] A. Perronace, C. Leppla, F. Leroy, B. Rousseau and S. Wigand, Soret and mass diffusion measurements and molecular dynamics simulations of n-pentane-n-decane mixtures, J. Chem. Phys. 116 (2002), 3718–3729.10.1063/1.1436473Suche in Google Scholar

[20] S. Antoun, M. Z. Saghir and S. Srinivasan, An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures, J. Chem. Phys. 148 (2018), 104507.10.1615/IHTC16.mpe.024664Suche in Google Scholar

[21] S. Antoun, M. Z. Saghir and S. Srinivasan, Composition effect on thermophobicity of ternary mixtures: an enhanced molecular dynamics method, J. Chem. Phys. 149 (2018), 034502.10.1063/1.5031004Suche in Google Scholar PubMed

[22] M. M. Zhang and F. Muller-Plathe, Reverse nonequilibrium molecular-dynamics calculation of the Soret coefficient in liquid benzene/cyclohexane mixtures, J. Chem. Phys. 123 (2005), 124502.10.1063/1.2042427Suche in Google Scholar PubMed

[23] S. H. Mozaffari, S. Srinivasan and M. Z. Saghir, A study on thermodiffusion in ternary liquid mixtures using enhanced molecular dynamics algorithm with experimental validation, Can. J. Chem. Eng. 97 (2019), 344–350.10.1002/cjce.23199Suche in Google Scholar

[24] C. Nieto-Draghi, J. B. Avalos and B. Rousseau, Computing the Soret coefficient in aqueous mixtures using boundary driven nonequilibrium molecular dynamics, J. Chem. Phys. 122 (2005), 114503.10.1063/1.1863872Suche in Google Scholar

[25] L. J. T. M. Kempers, A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid, J. Chem. Phys. 115 (2001), 6330.10.1063/1.1398315Suche in Google Scholar

[26] D. A. D. M. Mezquia, M. M. Bou-Ali and J. A. Madariaga, Mass effect on the Soret coefficient in n-alkane mixtures, J. Chem. Phys. 140 (2014), 084503.10.1063/1.4865936Suche in Google Scholar

[27] C. Debuschewitz and W. Wohler, Molecular origin of thermal diffusion in benzene + cyclohexane mixtures, Phys. Rev. Lett. 87 (2001), 055901.10.1103/PhysRevLett.87.055901Suche in Google Scholar

[28] P. A. Artola and B. Rousseau, Isotopic Soret effect in ternary mixtures: theoretical predictions and molecular simulations, J. Chem. Phys. 143 (2015), 174503.10.1063/1.4934634Suche in Google Scholar

[29] M. Eslamian and M. Z. Saghir, Microscopic study and modeling of thermodiffusion in binary associating mixtures, Phys. Rev. E 80 (2009), 061201.10.1103/PhysRevE.80.061201Suche in Google Scholar

[30] Y. Demirel and S. I. Sandler, Effects of concentration and temperature on the coupled heat and mass transport in liquid mixtures, Int. J. Heat Mass Transf. 45 (2002), 75–86.10.1016/S0017-9310(01)00121-1Suche in Google Scholar

[31] P. Polyakov, F. Muller-Plathe and S. Wiegand, Reverse nonequilibrium molecular dynamics calculation of the Soret coefficient in liquid heptane/benzene mixtures, J. Phys. Chem. B 112 (2008), 14999–15004.10.1021/jp805449jSuche in Google Scholar PubMed

[32] P. Polyakov, E. Rossinsky and S. Wiegand, Study of the Soret effect in hydrocarbon chain/aromatic compound mixtures, J. Phys. Chem. B 113 (2009), 13308–13312.10.1021/jp904667pSuche in Google Scholar PubMed

[33] P. Kumar and D. Goswami, Importance of molecular structure on the thermophoresis of binary mixtures, J. Phys. Chem. B 118 (2014), 14852–14859.10.1021/jp5079604Suche in Google Scholar PubMed

[34] W. M. Brown, A. Kohlmeyer, S. L. Plimpton and A. N. Tharrington, Implementing molecular dynamics on hybrid high performance computers – particle-particle-particle-mesh, Comput. Phys. Commun. 183 (2012), 449–459.10.1016/j.cpc.2011.10.012Suche in Google Scholar

[35] M. G. Martin and J. I. Siepmann, Noval configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes, J. Phys. Chem. B 103 (1999), 4508–4517.10.1021/jp984742eSuche in Google Scholar

[36] P. Wirnsberger, D. Frenkel and C. Dellago, An enhanced version of the heat exchange algorithm with excellent energy conservation properties, J. Chem. Phys. 143 (2015), 124104.10.1063/1.4931597Suche in Google Scholar PubMed

[37] P. J. Linstrom and M. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, 2020.Suche in Google Scholar

[38] W. M. Haynes, D. R. Lide and T. J. Bruno, CRC Handbook of Chemistry and Physics, 95th ed., Taylor & Francis Group, Boca Raton, 2014.10.1201/b17118Suche in Google Scholar

[39] L. Constantinou and R. Gani, New group contribution method for estimating properties of pure compounds, AIChE J. 40 (1994), 1697–1710.10.1002/aic.690401011Suche in Google Scholar

[40] S. Wiegand, Thermal diffusion in liquid mixtures and polymer solutions, J. Phys. Condens. Matter 16 (2004), R357–R379.10.1088/0953-8984/16/10/R02Suche in Google Scholar

[41] K. S. Pitzer, The volumetric and thermodynamic properties of fluids, I: Theoretical basis and viral coefficients, J. Am. Chem. Soc. 77 (1955), 107–113.10.1142/9789812795960_0043Suche in Google Scholar

[42] S. Hartmann, G. Wittko and W. Kohler, Thermophobicity of liquids: Heats of transport in mixtures as pure component properties, Phys. Rev. Lett. 109 (2012), 065901.10.1103/PhysRevLett.109.065901Suche in Google Scholar PubMed

[43] K. I. Morozov, Soret effect in molecular mixtures, Phys. Rev. Lett. 79 (2009), 031204.10.1103/PhysRevE.79.031204Suche in Google Scholar PubMed

[44] B. Pur, W. Kohler and K. I. Morozov, The Soret effect of halobenzenes in n-alkanes: The pseudo-isotope effect and thermophobicities, J. Chem. Phys. 152 (2020), 054501.10.1063/1.5141055Suche in Google Scholar

[45] L. Constantinou, R. Gani and J. P. O’Connell, Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method, Fluid Phase Equilib. 103 (1995), 11–22.10.1016/0378-3812(94)02593-PSuche in Google Scholar

[46] D. L. Morgan, Use of transformed correlations to help screen and populated properties within databanks, Fluid Phase Equilib. 256 (2007), 54–61.10.1016/j.fluid.2007.01.016Suche in Google Scholar

Received: 2020-11-23
Revised: 2021-03-26
Accepted: 2021-04-19
Published Online: 2021-05-11
Published in Print: 2021-10-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2020-0110/html
Button zum nach oben scrollen