Startseite The Maximum Power Cycle Operating Between a Heat Source and Heat Sink with Finite Heat Capacities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Maximum Power Cycle Operating Between a Heat Source and Heat Sink with Finite Heat Capacities

  • Osama M. Ibrahim ORCID logo EMAIL logo und Raed I. Bourisli ORCID logo
Veröffentlicht/Copyright: 8. Juli 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study aims to identify the thermodynamic cycle that produces the maximum possible power output from a heat source and sink with finite heat capacities. Earlier efforts used sequential Carnot cycles governed by heat transfer rate equations to determine the maximum power cycle. In this paper, a hypothesis is proposed where the heat capacities of the heat addition and rejection processes of the proposed maximum power cycle are assumed to match the heat source and sink, respectively. The result is a simple thermodynamic model that approximately defines the performance and shape of the proposed maximum power cycle, which are compared and verified with the shape and performance of optimized sequential Carnot cycles with closely matching results.

Acknowledgment

We gratefully acknowledge the support of Kuwait University.

  1. Conflict of interest: The authors declare no conflict of interest.

  2. Data availability statement: The datasets generated or analyzed during the current study are available from the author upon reasonable request.

Appendix A
Table 1

Counterflow heat exchanger effectiveness equations for the Carnot, Brayton, and MP cycles [28], [29].

Heat power cycle Heat exchanger Equation
Carnot cycle Hot-side heat exchanger ε H = 1 exp ( N T U H )
Cold-side heat exchanger ε L = 1 exp ( N T U L )
Brayton cycle*

MP cycle
Hot-side heat exchanger ε H = 1 exp N T U H ( 1 C r H ) 1 C r H exp N T U H ( 1 C r H ) ( C r H < 1 )
ε H = N T U H 1 + N T U H ( C r H = 1 )
Cold-side heat exchanger ε L = 1 exp N T U L ( 1 C r L ) 1 C r L exp N T U L ( 1 C r L ) ( C r L < 1 )
ε H = N T U L 1 + N T U L ( C r L = 1 )
  1. N T U H and N T U L are the number of heat transfer units of the hot- and cold-side heat exchangers.

  2. C r H = C ˙ H , min C ˙ H , max ; C r L = C ˙ L , min C ˙ L , max

  3. C ˙ H , max is the larger value of C ˙ H and C ˙ w f , while C ˙ L , max is the larger value of C ˙ L and C ˙ w f .

  4. The numbers of transfer units, N T U H and N T U L , in the Bryton cycle case are based on the minimum heat capacity rates.

References

[1] M. Feidt, The history and perspectives of efficiency at maximum power of the Carnot engine, Entropy 19 (2017), 369.10.3390/e19070369Suche in Google Scholar

[2] A. Vaudrey, F. Lanzetta and M. H. B. Feidt, Reitlinger and the origins of the efficiency at maximum power formula for heat engines, J. Non-Equilib. Thermodyn. 39 (2014), no. 4, 199–203.10.1515/jnet-2014-0018Suche in Google Scholar

[3] P. Chambadal, Les centrales nucléaires. Armand Colin, Paris, France, (1957), 41–58.Suche in Google Scholar

[4] I. Novikov, The efficiency of atomic power stations (A review), J. Nucl. Energy 7 (1958), 125–128.10.1016/0891-3919(58)90244-4Suche in Google Scholar

[5] M. M. El-Wakil, Nuclear power engineering, McGraw-Hill, New York, 1962.Suche in Google Scholar

[6] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975), 22–24.10.1119/1.10023Suche in Google Scholar

[7] J. P. Howe, The maximum power, heat demand, and efficiency of a heat engine operating in steady state at less than Carnot efficiency, Energy 7 (1982), no. 4, 401–402.10.1016/0360-5442(82)90099-8Suche in Google Scholar

[8] A. Bejan, Theory of heat transfer-irreversible power plants, Int. J. Heat Mass Transf. 31 (1988), no. 6, 1211–1219.10.1016/0017-9310(88)90064-6Suche in Google Scholar

[9] M. Bucher, Maximum-power efficiency of a Carnot engine, Int. J. Eng. Educ. 12 (1996), no. 1, 47–50.Suche in Google Scholar

[10] C. Wu, Power optimization of a finite-time Carnot heat engine, Energy 13 (1988), no. 9, 681–687.10.1016/0360-5442(88)90099-0Suche in Google Scholar

[11] W. Y. Lee, S. S. Kim and S. H. Won, Finite-time optimizations of a heat engine, Energy 15 (1990), no. 11, 979–985.10.1016/0360-5442(90)90023-USuche in Google Scholar

[12] O. M. Ibrahim, S. A. Klein and J. W. Mitchell, Optimum heat power cycles for specified boundary conditions, J. Eng. Gas Turbines Power. 113 (1991), no. 4, 514–521.10.1115/1.2906271Suche in Google Scholar

[13] B. Andresen, R. S. Berry, A. Nitzan and P. Salamon, Thermodynamics in finite time. I. The step-Carnot cycle, Phys. Rev. A 15 (1977), 2086.10.1103/PhysRevA.15.2086Suche in Google Scholar

[14] M. Blaise, M. Feidt and D. Maillet, Influence of the working fluid properties on optimized power of an irreversible finite dimensions Carnot engine, Energy Convers. Manag. 163 (2018), 444–456.10.1016/j.enconman.2018.02.056Suche in Google Scholar

[15] Y. Haseli, The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines, Heliyon 2 (2016) e00113.10.1016/j.heliyon.2016.e00113Suche in Google Scholar

[16] M. A. Ait-Ali, Maximum power and thermal efficiency of an irreversible power cycle, J. Appl. Phys. 78 (1995), 4313–4318.10.1063/1.359834Suche in Google Scholar

[17] T. Yilmaz and Y. Durmusoglu, Efficient power analysis for an irreversible Carnot heat engine, Int. J. Energy Res. 32 (2008), 623–628.10.1002/er.1377Suche in Google Scholar

[18] H. S. Leff, Thermal efficiency at maximum work output: New results for old heat engines, Am. J. Phys. 55 (1987), 602–610.10.1119/1.15071Suche in Google Scholar

[19] A. Calvo Hernández, J. M. M. Roco, A. Medina, S. Velasco and L. Guzmán-Vargas, The maximum power efficiency 1 τ : Research, education, and bibliometric relevance, Eur. Phys. J. Spec. Top. 224 (2015), 809–823.10.1140/epjst/e2015-02429-4Suche in Google Scholar

[20] C. Wu, Power optimization of an endoreversible Brayton gas heat engine, Energy Convers. Manag. 31 (1991), no. 6, 561–565.10.1016/0196-8904(91)90091-VSuche in Google Scholar

[21] M. Feidt, Optimization of Brayton cycle engine in contact with fluid thermal capacities, Rev. Gén. Therm. 35 (1996), 662–666.10.1016/S0035-3159(96)80063-8Suche in Google Scholar

[22] L. Chen, J. Zheng, F. Sun and C. Wu, Performance comparison of an irreversible closed Brayton cycle under maximum power density and maximum power conditions, Int. J. Exergy 2 (2002), 345–351.10.1016/S1164-0235(02)00070-5Suche in Google Scholar

[23] M. J. Ondrechen, B. Andresen, M. Mozurkewich and R. S. Berry, Maximum work from a finite reservoir by sequential Carnot cycles, Am. J. Phys. 49 (1981), no. 7, 681–685.10.1119/1.12426Suche in Google Scholar

[24] T. Morisaki and Y. Ikegami, Maximum power of a multistage Rankine cycle in low-grade thermal energy conversion, Appl. Therm. Eng. 69 (2014), 78–85.10.1016/j.applthermaleng.2014.04.004Suche in Google Scholar

[25] H. Park and M. S. Kim, Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity, Energy 68 (2014), 592–598.10.1016/j.energy.2014.02.073Suche in Google Scholar

[26] H. Park and M. S. Kim, Performance analysis of sequential Carnot cycles with finite heat sources and heat sinks and its application in organic Rankine cycles, Energy 99 (2016), 1–9.10.1016/j.energy.2016.01.019Suche in Google Scholar

[27] O. M. Ibrahim and S. A. Klein, High-Power Multi-Stage Rankine Cycles, J. Energy Resour. Technol. 117 (1995), no. 3, 192–196.10.1115/1.2835340Suche in Google Scholar

[28] W. M. Kays and A. L. London, Compact heat exchangers, 3rd ed., MacGraw-Hill, New York, 1984.Suche in Google Scholar

[29] T. L. Bergman, A. S. Lavine, F. P. Incropera and D. P. Dewitt, Introduction to heat transfer, 6th ed., John Willey & Sons, Inc., 2011.Suche in Google Scholar

Received: 2020-08-15
Revised: 2021-05-03
Accepted: 2021-06-14
Published Online: 2021-07-08
Published in Print: 2021-10-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2020-0086/html
Button zum nach oben scrollen