Abstract
Recent studies have revealed the complex structure of nerve signals in axons. Besides the electrical signal, mechanical and thermal effects are also detected in many experimental studies. In this paper, the mathematical models of heat generation are analysed within the framework of a general model derived earlier by the authors. The main mechanisms of heat generation are seemingly Joule heating and endo- and exothermic reactions. The concept of internal variables permits to model the heat relaxation typical to these reactions. The general energy balance of the whole signal is analysed based on physical mechanisms responsible for emerging the components of a signal which constitutes a wave ensemble. The novelty of this study is in describing the energy for all the components of the wave ensemble. Some open questions are listed for further studies.
Funding source: Eesti Teadusagentuur
Award Identifier / Grant number: IUT 33-24
Funding statement: This research was supported by the Estonian Research Council projects IUT 33-24 and PRG 1227.
References
[1] A. V. Hill, A closer analysis of the heat production of nerve, Proc. R. Soc. London. Ser. B, Contain. Pap. A Biol. Character. 111 (1932), no. 770, 106–164.10.1098/rspb.1932.0047Search in Google Scholar
[2] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), no. 4, 500–544.10.1113/jphysiol.1952.sp004764Search in Google Scholar
[3] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), no. 6, 445–466.10.1016/S0006-3495(61)86902-6Search in Google Scholar
[4] J. R. Clay, Axonal excitability revisited, Prog. Biophys. Mol. Biol. 88 (2005), no. 1, 59–90.10.1016/j.pbiomolbio.2003.12.004Search in Google Scholar PubMed
[5] D. Debanne, E. Campanac, A. Bialowas, E. Carlier and G. Alcaraz, Axon physiology, Physiol. Rev. 91 (2011), no. 2, 555–602.10.1152/physrev.00048.2009Search in Google Scholar PubMed
[6] A. Watanabe, Mechanical, thermal, and optical changes of the nerve membrane associated with excitation, Jpn. J. Physiol. 36 (1986), 625–643.10.2170/jjphysiol.36.625Search in Google Scholar PubMed
[7] T. Heimburg, The important consequences of the reversible heat production in nerves and the adiabaticity of the action potential, preprint (2020). arXiv:2002.06031v1 [physics.bio-ph].Search in Google Scholar
[8] J. Engelbrecht, K. Tamm and T. Peets, On mechanisms of electromechanophysiological interactions between the components of nerve signals in axons, Proc. Estonian Acad. Sci. 69 (2020), no. 2, 81–96.10.3176/proc.2020.2.03Search in Google Scholar
[9] J. Engelbrecht, K. Tamm and T. Peets, Modeling of complex signals in nerve fibers, Med. Hypotheses 120 (2018), 90–95.10.1016/j.mehy.2018.08.021Search in Google Scholar PubMed
[10] J. Engelbrecht, K. Tamm and T. Peets, Criteria for modelling wave phenomena in complex systems: the case of signals in nerves, Proc. Estonian Acad. Sci. 68 (2019), no. 3, 276–283.10.3176/proc.2019.3.05Search in Google Scholar
[11] J. Engelbrecht, K. Tamm and T. Peets, Continuum mechanics and signals in nerves, Proc. Estonian Acad. Sci. 70 (2021), no. 1, 3–18.10.3176/proc.2021.1.02Search in Google Scholar
[12] P. C. Nelson, M. Radosavljevic and S. Bromberg, Biological Physics: Energy, Information, Life, W. H. Freeman and Company, New York, NY, 2003.Search in Google Scholar
[13] P. C. Bressloff, Waves in Neural Media, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer New York, New York, NY, 2014.10.1007/978-1-4614-8866-8Search in Google Scholar
[14] C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981), no. 1, 193–213.10.1016/S0006-3495(81)84782-0Search in Google Scholar
[15] T. Heimburg and A. D. Jackson, On soliton propagation in biomembranes and nerves, Proc. Natl. Acad. Sci. USA 102 (2005), no. 28, 9790–9795.10.1073/pnas.0503823102Search in Google Scholar PubMed PubMed Central
[16] T. Heimburg and A. D. Jackson, On the action potential as a propagating density pulse and the role of anesthetics, Biophys. Rev. Lett. 02 (2007), no. 01, 57–78.10.1142/S179304800700043XSearch in Google Scholar
[17] M. M. Rvachev, On axoplasmic pressure waves and their possible role in nerve impulse propagation, Biophys. Rev. Lett. 5 (2010), no. 2, 73–88.10.1142/S1793048010001147Search in Google Scholar
[18] E. V. Vargas, A. Ludu, R. Hustert, P. Gumrich, A. D. Jackson and T. Heimburg, Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve, Biophys. Chem. 153 (2011), no. 2-3, 159–167.10.1016/j.bpc.2010.11.001Search in Google Scholar PubMed
[19] F. Contreras, F. Ongay, O. Pavón and M. Aguero, Non-topological solitons as traveling pulses along the nerve, Int. J. Mod. Nonlinear Theory Appl. 02 (2013), no. 04, 195–200.10.4236/ijmnta.2013.24027Search in Google Scholar
[20] H. Barz, A. Schreiber and U. Barz, Impulses and pressure waves cause excitement and conduction in the nervous system, Med. Hypotheses 81 (2013), no. 5, 768–772.10.1016/j.mehy.2013.07.049Search in Google Scholar PubMed
[21] R. Appali, S. Petersen and U. van Rienen, A comparision of Hodgkin-Huxley and soliton neural theories, Adv. Radio Sci. 8 (2010), 75–79.10.5194/ars-8-75-2010Search in Google Scholar
[22] B. Drukarch, H. A. Holland, M. Velichkov, J. J. G. Geurts, P. Voorn, G. Glas, et al., Thinking about the nerve impulse: A critical analysis of the electricity-centered conception of nerve excitability, Prog. Neurobiol. 169 (2018), 172–185.10.1016/j.pneurobio.2018.06.009Search in Google Scholar PubMed
[23] J. Engelbrecht, T. Peets and K. Tamm, Electromechanical coupling of waves in nerve fibres, Biomech. Model. Mechanobiol. 17 (1771–1783), no. 6, 2018.10.1007/s10237-018-1055-2Search in Google Scholar PubMed
[24] J. Engelbrecht, K. Tamm and T. Peets, Internal variables used for describing the signal propagation in axons, Contin. Mech. Thermodyn. 32 (2020), no. 6, 1619–1627.10.1007/s00161-020-00868-2Search in Google Scholar
[25] K. Tamm, J. Engelbrecht and T. Peets, Temperature changes accompanying signal propagation in axons, J. Non-Equilibrium Thermodyn. 44 (2019), no. 3, 277–284.10.1515/jnet-2019-0012Search in Google Scholar
[26] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962), no. 10, 2061–2070.10.1109/JRPROC.1962.288235Search in Google Scholar
[27] J. Engelbrecht, T. Peets, K. Tamm, M. Laasmaa and M. Vendelin, On the complexity of signal propagation in nerve fibres, Proc. Estonian Acad. Sci. 67 (2018), no. 1, 28–38.10.3176/proc.2017.4.28Search in Google Scholar
[28] A. El Hady and B. B. Machta, Mechanical surface waves accompany action potential propagation, Nat. Commun. 6 (2015), 6697.10.1038/ncomms7697Search in Google Scholar PubMed
[29] H. Chen, D. Garcia-Gonzalez and A. Jérusalem, Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation, Phys. Rev. E 99 (2019), no. 3, 032406.10.1103/PhysRevE.99.032406Search in Google Scholar PubMed
[30] H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. 1 (1948), no. 2, 93–122.10.1152/jappl.1948.1.2.93Search in Google Scholar PubMed
[31] K. Kaufmann, Action Potentials and Electromechanical Coupling in the Macroscopic Chiral Phospholipid Bilayer. Caruaru, 1989.Search in Google Scholar
[32] D. G. Margineanu and E. Schoffeniels, Molecular events and energy changes during the action potential, Proc. Natl. Acad. Sci. 74 (1977), no. 9, 3810–3813.10.1073/pnas.74.9.3810Search in Google Scholar PubMed PubMed Central
[33] C. W. Hall, Laws and Models: Science, Engineering, and Technology, CRC Press, Boca Raton, 1999.10.1201/9781420050547Search in Google Scholar
[34] Y. Shu, A. Duque, Y. Yu, B. Haider and D. A. McCormick, Properties of action-potential initiation in neocortical pyramidal cells: Evidence from whole cell axon recordings, J. Neurophysiol. 97 (2007), no. 1, 746–760.10.1152/jn.00922.2006Search in Google Scholar PubMed
[35] B. P. Bean, The action potential in mammalian central neurons, Nat. Rev. Neurosci. 8 (2007), no. 6, 451–465.10.1038/nrn2148Search in Google Scholar
[36] C. Y. M. Huang and M. N. Rasband, Axon initial segments: structure, function, and disease, Ann. N.Y. Acad. Sci. 1420 (2018), no. 1, 46–61.10.1111/nyas.13718Search in Google Scholar
[37] A. L. Hodgkin and A. F. Huxley, Resting and action potentials in single nerve fibres, J. Physiol. 104 (1945), 176–195.10.1113/jphysiol.1945.sp004114Search in Google Scholar
[38] I. Tasaki, A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation, Physiol. Chem. Phys. Med. NMR 20 (1988), no. 4, 251–268.Search in Google Scholar
[39] Y. Yang, X. W. Liu, H. Wang, H. Yu, Y. Guan, S. Wang, et al., Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion, ACS Nano 12 (2018), no. 5, 4186–4193.10.1021/acsnano.8b00867Search in Google Scholar
[40] J. Engelbrecht, T. Peets and K. Tamm, Electromechanical coupling of waves in nerve fibres, Biomech. Model. Mechanobiol. 17 (1771–1783), no. 6, 2018.10.1007/s10237-018-1055-2Search in Google Scholar
[41] H. J. Lee, Y. Jiang and J. X. Cheng, Label-free optical imaging of membrane potential, Curr. Opin. Biomed. Eng. 12 (2019), 118–125.10.1016/j.cobme.2019.11.001Search in Google Scholar
[42] A. V. Porubov, Amplification of Nonlinear Strain Waves in Solids, World Scientific, Singapore, 2003.10.1142/5238Search in Google Scholar
[43] B. C. Abbott, A. V. Hill and J. V. Howarth, The positive and negative heat production associated with a nerve impulse, Proc. R. Soc. B Biol. Sci. 148 (1958), no. 931, 149–187.10.1098/rspb.1958.0012Search in Google Scholar
[44] J. V. Howarth, R. D. Keynes and J. M. Ritchie, The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres, J. Physiol. 194 (1968), no. 3, 745–793.10.1113/jphysiol.1968.sp008434Search in Google Scholar
[45] J. M. Ritchie and R. D. Keynes, The production and absorption of heat associated with electrical activity in nerve and electric organ, Q. Rev. Biophys. 18 (1985), no. 04, 451.10.1017/S0033583500005382Search in Google Scholar
[46] A. C. Downing, R. W. Gerard and A. V. Hill, The heat production of nerve, Proc. R. Soc. B Biol. Sci. 100 (1926), no. 702, 223–251.10.1098/rspb.1926.0044Search in Google Scholar
[47] R. de A. Nogueira and E. A. Conde Garcia, A theoretical study on heat production in squid giant axon, J. Theor. Biol. 104 (1983), no. 1, 43–52.10.1016/0022-5193(83)90400-9Search in Google Scholar
[48] J. V. Howarth, J. M. Ritchie and D. Stagg, The initial heat production in garfish olfactory nerve fibres, Proc. R. Soc. London. Ser. B. Biol. Sci. 205 (1979), no. 1160, 347–367.10.1098/rspb.1979.0069Search in Google Scholar
[49] I. Tasaki and P. M. Byrne, Heat production associated with a propagated impulse in Bullfrog myelinated nerve fibers, Jpn. J. Physiol. 42 (1992), no. 5, 805–813.10.2170/jjphysiol.42.805Search in Google Scholar PubMed
[50] A. C. L. De Lichtervelde, J. P. De Souza and M. Z. Bazant, Heat of nervous conduction: A thermodynamic framework, Phys. Rev. E 101 (2020), 2.10.1103/PhysRevE.101.022406Search in Google Scholar PubMed
[51] G. A. Maugin and W. Muschik, Thermodynamics with internal variables. Part I. General concepts, J. Non-Equilibrium Thermodyn. 19 (1994), no. 3, 217–249.10.1515/jnet.1994.19.3.217Search in Google Scholar
[52] J. V. Howarth, R. D. Keynes, J. M. Ritchie and A. von Muralt, The heat production associated with the passage of a single impulse in pike olfactory nerve fibres, J. Physiol. 249 (1975), no. 2, 349–368.10.1113/jphysiol.1975.sp011019Search in Google Scholar PubMed PubMed Central
[53] H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger and M. P. Scott, Transport of ions and small molecules across cell membranes, Mol. Cell Biol. (2004), 245–300.Search in Google Scholar
[54] T. Heimburg and A. D. Jackson, Thermodynamics of the Nervous Impulse, in: Nag Kaushik (ed.), Structure and Dynamics of Membranous Interfaces, John Wiley & Sons (2008).10.1002/9780470388495.ch12Search in Google Scholar
[55] S. Terakawa, Potential-dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon, J. Physiol. 369 (1985), no. 1, 229–248.10.1113/jphysiol.1985.sp015898Search in Google Scholar PubMed PubMed Central
[56] J. K. Mueller and W. J. Tyler, A quantitative overview of biophysical forces impinging on neural function, Phys. Biol. 11 (2014), no. 5, 051001.10.1088/1478-3975/11/5/051001Search in Google Scholar PubMed
[57] L. Deseri, M. D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes, Contin. Mech. Thermodyn. 20 (2008), no. 5, 255–273.10.1007/s00161-008-0081-1Search in Google Scholar
[58] M. J. Ablowitz, Nonlinear Dispersive Waves, Cambridge University Press, Cambridge, 2011.10.1017/CBO9780511998324Search in Google Scholar
[59] H. Berg and K. Blagoev, Perspectives on working at the physics-biology interface, Phys. Biol. 11 (2014), no. 5, 050301.10.1088/1478-3975/11/5/050301Search in Google Scholar PubMed
[60] D. Gavaghan, A. Garny, P. K. Maini and P. Kohl, Mathematical models in physiology, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364 (2006), no. 1842, 1099–1106.10.1098/rsta.2006.1757Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- Non-Equilibrium Molecular Dynamics Study of the Influence of Branching on the Soret Coefficient of Binary Mixtures of Heptane Isomers
- On the Physical Background of Nerve Pulse Propagation: Heat and Energy
- Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows
- Continuum Modeling Perspectives of Non-Fourier Heat Conduction in Biological Systems
- The Maximum Power Cycle Operating Between a Heat Source and Heat Sink with Finite Heat Capacities
- Size Effects and Beyond-Fourier Heat Conduction in Room-Temperature Experiments
- The Role of Internal Irreversibilities in the Performance and Stability of Power Plant Models Working at Maximum ϵ-Ecological Function
Articles in the same Issue
- Frontmatter
- Research Articles
- Non-Equilibrium Molecular Dynamics Study of the Influence of Branching on the Soret Coefficient of Binary Mixtures of Heptane Isomers
- On the Physical Background of Nerve Pulse Propagation: Heat and Energy
- Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-Equilibrium Flows
- Continuum Modeling Perspectives of Non-Fourier Heat Conduction in Biological Systems
- The Maximum Power Cycle Operating Between a Heat Source and Heat Sink with Finite Heat Capacities
- Size Effects and Beyond-Fourier Heat Conduction in Room-Temperature Experiments
- The Role of Internal Irreversibilities in the Performance and Stability of Power Plant Models Working at Maximum ϵ-Ecological Function