Startseite Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface

  • Anantha Kumar K. , Sugunamma V. EMAIL logo und Sandeep N. EMAIL logo
Veröffentlicht/Copyright: 18. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriate transmutations are exploited to metamorphose the flow equations into ODEs. The acquired non-linear ODEs are highly coupled. These are tackled with the consecutive implication of fourth-order Runge–Kutta and shooting techniques. The variations of flow governing parameters on the dimensionless velocity, micro-rotation and temperature plus the measure of heat transport, couple stress coefficient and friction factor are thoroughly explained using plots and tables. Outcomes stipulate that increasing the values of the stretching ratio parameter causes the thermal field to decline and the velocity field to inflate. Also, an upsurge in the micropolar parameter produces an increase in the rate of heat transport but an opposite outcome is detected with the couple stress coefficient. To the best of our knowledge the non-orthogonal stagnated motion of micropolar liquid with radiation as non-linear and variable heat source/sink has never before been scrutinized.

References

[1] K. Hiemenz, Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten garden Kreiszylinder, Dinglers Polytech. J. 326 (1911), 321–324.Suche in Google Scholar

[2] T. R. Mahapatra and A. S. Gupta, Magnetohydrodynamic stagnation point flow towards a stretching sheet, Acta Mech. 152 (2001), 191–196.10.1007/BF01176953Suche in Google Scholar

[3] C. Y. Wang, Stagnation flow towards a shrinking sheet, Int. J. Non-Linear Mech. 43 (2008), 377–382.10.1016/j.ijnonlinmec.2007.12.021Suche in Google Scholar

[4] M. J. Babu and N. Sandeep, Effect of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic nanofluid over a stretching sheet, Alex. Eng. J. 55 (2016), 1931–1939.10.1016/j.aej.2016.08.001Suche in Google Scholar

[5] N. Abbas, S. Saleem, S. Nadeem, A. A. Alderremy and A. U. Khan, On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip, Res. Phys. 9 (2018), 1224–1232.10.1016/j.rinp.2018.04.017Suche in Google Scholar

[6] A. Ishak, R. Nazar and I. Pop, Hydrodynamic flow of heat transfer adjacent to a stretching vertical sheet, Heat Mass Transf. 44 (2008), 921–927.10.1007/s00231-007-0322-zSuche in Google Scholar

[7] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. 57 (2018), 435–443.10.1016/j.aej.2016.11.013Suche in Google Scholar

[8] B. Jalilpour, S. Jafarmadar, M. M. Rashidi, D. D. Ganji, R. Rahime and A. B. Shotorban, MHD non orthogonal stagnation point flow of a nonofluid towards a stretching surface in the presence of thermal radiation, Ain Shams Eng. J. (2017), 2090–4479, DOI: 10.1016/j.asej.2016.09.011.Suche in Google Scholar

[9] A. C. Eringen, Simple microfluids, Int. J. Eng. Sci. 2 (1964), 205–217.10.1016/0020-7225(64)90005-9Suche in Google Scholar

[10] R. Nazar, N. Amin, D. FIlip and I. Pop, Stagnation-point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech. 39 (2004), 1227–1235.10.1016/j.ijnonlinmec.2003.08.007Suche in Google Scholar

[11] G. K. Ramesh, B. J. Gireesha, T. Hayat and A. Alsaedi, Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles, Alex. Eng. J. 55 (2016), no. 2, 857–865.10.1016/j.aej.2016.02.007Suche in Google Scholar

[12] S. Nadeem, Z. Ahmad and S. Saleem, The effect of variable viscosities on micropolar flow of two nanofluids, Z. Naturforsch. 71 (2016), no. 12, 1121–1129.10.1515/zna-2015-0491Suche in Google Scholar

[13] T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Peristalsis of Eyring-Powell magneto nanomaterial considering Darcy-Forchheimer relation, Int. J. Heat Mass Transf. 115 (2017), 694–702.10.1016/j.ijheatmasstransfer.2017.07.043Suche in Google Scholar

[14] T. Hayat, S. Farooq and A. Alsaedi, MHD peristaltic flow in a curved channel with convective condition, J. Mech. 33 (2017), no. 4, 483–499.10.1017/jmech.2016.76Suche in Google Scholar

[15] T. Hayat, S. Makhdoom, M. Awais, S. Saleem and M. M. Rashid, Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis, Appl. Math. Mech. 37 (2016), no. 7, 919–928.10.1007/s10483-016-2093-9Suche in Google Scholar

[16] S. Farooq, T. Hayat, B. Ahmad and A. Alsaedi, MHD flow of Eyring–Powell liquid in convectively curved configuration, J. Braz. Soc. Mech. Sci. Eng. 40 (2018), no. 3, 1–14.10.1007/s40430-018-1071-2Suche in Google Scholar

[17] S. Farooq, A. Alsaedi, T. Hayat and B. Ahmad, Peristaltic transport of Johnson–Segalman fluid with homogeneous–heterogeneous reactions: a numerical analysis, J. Braz. Soc. Mech. Sci. Eng. 40 (2018), no. 5 242 (1–11).10.1007/s40430-018-1173-xSuche in Google Scholar

[18] K. B. Lakshmi, K. Anantha Kumar, J. V. R. Reddy and V. Sugunamma, Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet, J. Nanofluids 8 (2019), 73–83.10.1166/jon.2019.1564Suche in Google Scholar

[19] Y. Y. Lok, I. Pop and A. J. Chamkha, Non-orthogonal stagnation-point flow of a micropolar fluid, Int. J. Eng. Sci. 45 (2007), 173–184.10.1016/j.ijengsci.2006.04.016Suche in Google Scholar

[20] F. Lobropulu, D. Li and I. Pop, Non-orthogonal stagnation point flow towards a stretching surface in a non-Newtonian fluid with heat transfer, Int. J. Therm. Sci. 49 (2010), 1042–1050.10.1016/j.ijthermalsci.2009.12.005Suche in Google Scholar

[21] R. Mehmood, S. Nadeem and N. S. Akbar, Non-aligned ethylene-glycol 30 % based stagnation point fluid over a stretching surface with hematite nano particles, J. Appl. Fluid Mech. 9 (2016), no. 3, 1359–1366.10.18869/acadpub.jafm.68.228.24458Suche in Google Scholar

[22] R. Mehmood, S. Nadeem, S. Saleem and N. S. Akbar, Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate, J. Taiwan Inst. Chem. Eng. 74 (2017), 49–58.10.1016/j.jtice.2017.02.001Suche in Google Scholar

[23] M. A. Seddeek, Flow of a magneto-micropolar fluid past a continuously moving plate, Phys. Lett. A 306 (2003), 255–257.10.1016/S0375-9601(02)01513-XSuche in Google Scholar

[24] T. Hayat, T. Javed and Z. Abbas, MHD flow of a micropolar fluid near a stagnation point towards a non-linear stretching surface, Nonlinear Anal., Real World Appl. 10 (2009), 1514–1526.10.1016/j.nonrwa.2008.01.019Suche in Google Scholar

[25] M. Ashraf and M. M. Ashraf, MHD stagnation point flow of a micropolar fluid towards a heated surface, Appl. Math. Mech. 32 (2011), no. 1, 45–54.10.1007/s10483-011-1392-7Suche in Google Scholar

[26] N. Sandeep, A. J. Chamkha and I. L. Aniamasaun, Numerical exploration of magnetohydrodynamic nanofluid flow suspended with magnetite nanoparticles, J. Braz. Soc. Mech. Sci. Eng. 39 (2017), 3635–3644.10.1007/s40430-017-0866-xSuche in Google Scholar

[27] T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating, AIP Adv. 6 (2014), no. 4, 045302.10.1063/1.4945767Suche in Google Scholar

[28] S. Farooq, M. Awais, M. Naseem, T. Hayat and B. Ahmad, Magnetohydrodynamic peristalsis of variable viscosity Jeffrey liquid with heat and mass transfer, Nucl. Eng. Technol. 49 (2017), no. 7, 1396–1404.10.1016/j.net.2017.07.013Suche in Google Scholar

[29] H. S. Takhar, R. S. Agarwal, R. Bhargava and S. Jain, Mixed convection flow of a micropolar fluid over a stretching sheet, Heat Mass Transf. 34 (1998), 213–219.10.1007/s002310050252Suche in Google Scholar

[30] E. M. A. Eldahab and A. F. Ghonaim, Convective heat transfer in an electrically conduction micropolar fluid at a stretching surface with uniform free stream, Appl. Math. Comp. 137 (2003), 323–336.10.1016/S0096-3003(02)00128-5Suche in Google Scholar

[31] M. Waqas, M. Farooq, M. I. Khan, A. Alsaedi, T. Hayat and T. Yasmeen, Magnetohydrodynamic (MHD) mixed convective flow of micropolr liquid due to non-linear stretched sheet with convective condition, Int. J. Heat Mass Transf. 102 (2016), 762–772.10.1016/j.ijheatmasstransfer.2016.05.142Suche in Google Scholar

[32] R. Tabassum, R. Mehmood and N. S. Akbar, Magnetite micropolar nanofluid non-aligned MHD flow with mixed convection, Eur. Phys. J. Plus 132 (2017), DOI: 10.1140/epjp/i2017-11537-2.Suche in Google Scholar

[33] M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee and S. Saleem, Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term, Int. J. Heat Mass Transf. 126 (2018), 1252–1264.10.1016/j.ijheatmasstransfer.2018.05.116Suche in Google Scholar

[34] M. Farooq, M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi and M. I. Khan, MHD stagnation point flow of viscoelastic nanofluid with nonlinear radiation effects, J. Mol. Liq. 221 (2016), 1097–1103.10.1016/j.molliq.2016.06.077Suche in Google Scholar

[35] J. V. R. Reddy, V. Sugunamma and N. Sandeep, Effect of frictional heating on radiative ferrofluid flow over a slendering stretching sheet with aligned magnetic field, Eur. Phys. J. Plus 132 (2017).10.1140/epjp/i2017-11287-1Suche in Google Scholar

[36] F. A. Soomroa, R. U. Haq, Q. M. A. Mdallac and Q. Zhan, Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanoliquid along a moving surface, Res. Phys. 8 (2018), 404–414.10.1016/j.rinp.2017.12.037Suche in Google Scholar

[37] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source, Multi. Mod. Mat. Str. (2018), DOI: 10.1108/MMMS-12-2017-0151.Suche in Google Scholar

[38] C. S. K. Raju, S. Saleem, S. U. Mamatha and I. Hussain, Heat and mass transport phenomena of radiated slender body of three revolutions with saturated porous: Buongiorno’s model, Int. J. Therm. Sci. 132 (2018), 309–315.10.1016/j.ijthermalsci.2018.06.016Suche in Google Scholar

[39] Z. Li, M. Sheikholeslami, A. J. Chamkha, Z. A. Raizah and S. Saleem, Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation, Comput. Methods Appl. Mech. Eng. 338 (2018), 618–633.10.1016/j.cma.2018.04.023Suche in Google Scholar

[40] S. Saleem, S. Nadeem, M. M. Rashidi and C. S. K. Raju, An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source, Microsyst. Technol. (2018) 1–7.10.1007/s00542-018-3996-xSuche in Google Scholar

[41] N. Sandeep and C. Sulochana, Dual solutions for unsteady mixed convective flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Int. J. Eng. Sci. Technol. 18 (2015), 738–745.10.1016/j.jestch.2015.05.006Suche in Google Scholar

[42] B. Ramandevi, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alex. Eng. J. (2017), DOI: 10.1016/j.aej.2017.01.026.Suche in Google Scholar

[43] J. V. R. Reddy, K. Anantha Kumar, V. Sugunamma and N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J. (2017), DOI: 10.1016/j.aej.2017.03.008.Suche in Google Scholar

[44] K. Anantha Kumar, J. V. R. Reddy, V. Sugunamma and N. Sandeep, Impact of frictional heating on MHD radiative ferrofluid past a convective shrinking surface, Def. Diff, Forum 378 (2017), 157–174.10.4028/www.scientific.net/DDF.378.157Suche in Google Scholar

Received: 2018-05-26
Revised: 2018-07-21
Accepted: 2018-07-26
Published Online: 2018-08-18
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0022/html
Button zum nach oben scrollen