Startseite Buoyancy-Driven Rayleigh–Taylor Instability in a Vertical Channel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Buoyancy-Driven Rayleigh–Taylor Instability in a Vertical Channel

  • Noufe H. Aljahdaly und Layachi Hadji EMAIL logo
Veröffentlicht/Copyright: 20. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Suppose that a vertical tube is composed of two chambers that are separated by a retractable thermally insulated thin membrane. The upper and lower chambers are filled with an incompressible fluid and maintained at temperatures Tc and Th>Tc, respectively. Upon removal of the membrane, the two fluid masses form an unstably stratified Rayleigh–Taylor-type configuration with cold and heavy fluid overlying a warmer and lighter fluid and separated by an interface across which there is a discontinuity in the density. Due to the presence of an initial discontinuity between two homogeneous states, this problem is mathematically homologous to that of the shock tube problem with the thermal expansion playing the role of pressure. When the two fluid regions are brought directly into contact with each other and the transient interfacial fluctuations have subsided, we show the emergence of a stationary state of convection through a supercritical bifurcation provided a threshold value for the temperature difference is exceeded. We suggest a possible way for the experimental testing of the theoretical results put forth in this paper.

Acknowledgment

The authors thank the referee for bringing to our attention the experimental work on the buoyancy-driven Rayleigh–Taylor instability.

Appendix A Experimental approximation

Consider a vertical slot that is filled with an incompressible fluid, the upper and lower parts of which are maintained at temperatures T2 and T1>T2, respectively, by top and bottom heaters. The two heaters are separated by thin thermally insulated barriers and the two fluid masses are separated by a retractable thermally insulated membrane at z=Z0. The mixing of the cold and warm fluids is achieved by gently pulling the membrane. We consider a membrane of thickness 2ϵ˜ and thermal conductance Km that is centrally located and thermal barriers of thickness δ˜ϵ˜ and thermal conductance Kb. We have TˆB=T1 for z>δ˜ and TˆB=T2 for z<δ˜. The temperatures Tu and Tb, of the fluids within the upper and lower thermal barrier regions, respectively, and the temperature Tm of the membrane are given by

Tu(z)=BIT2T12(ϵ˜BI(ϵ˜δ˜))(zδ˜)+T2,TB(z)=BIT2T12(ϵ˜BI(ϵ˜δ˜))(z+δ˜)+T1,Tm(z)=T2T12(ϵ˜BI(ϵ˜δ˜))z+T1+T22,

where BI=Km/KL is the Biot number, KL being the thermal conductance of the fluid. While our theoretical analysis pertains to the limiting case δ˜0 and BI0, our results will be well approximated by experiments having ϵ˜<δ˜1 and BI1. A plot of these temperature profiles resembles that of tanh(z/e), where the thinness of the membrane e.

Appendix B Two-dimensional channel of finite aspect ratio

The matrix entries for the homogeneous system DˆU=0 are given by the expressions dij for 1i5, 1j5, with the exception of Dˆ61=d61+Rq61, Dˆ62=d62+Rq62 and Dˆ63=d63+Rq63; U=[B1B2B3C1C2C3]. We can express the determinant of (Dˆ) as det(Dˆ)=det(D1)+Rdet(D2), where the entries of D1 and D2 are given by the expressions dij with the exception of the last row of D2 being [q61q62q63000] and l=π, i. e.,

d11=l(Z0+λ)cosh(l(Z0+λ))+sinh(l(Z0+λ)),d12=(Z0+λ)sinh(l(Z0+λ)),d13=(Z0+λ)2sinh(l(Z0+λ)),d14=l(Z0λ)cosh(l(Z0λ))sinh(l(Z0λ)),d15=(Z0λ)sinh(l(Z0λ)),d16=(Z0λ)2sinh(l(Z0λ)),d21=(l)2(Z0+λ)sinh(l(Z0+λ)),d22=(Z0+λ)lcosh(l(Z0+λ))+sinh(l(Z0+λ)),d23=(Z0+λ)2lcosh(l(Z0+λ))+2(Z0+λ)sinh(l(Z0+λ)),d24=l2(Z0λ)sinh(l(Z0λ)),d25=(Z0λ)lcosh(l(Z0λ))sinh(l(Z0λ)),d26=(Z0λ)2lcosh(l(Z0λ))2(Z0λ)sinh(l(Z0λ)),d31=(Z0+λ)l3cosh(l(Z0+λ))(Z0+λ)2sinh(l(Z0+λ)),d32=2lcosh(l(Z0+λ))+l2(Z0+λ)sinh(l(Z0+λ)),d33=(2+l2(Z0+λ)2)sinh(l(Z0+λ))+4l(Z0+λ)cosh(l(Z0+λ)),d34=(Z0λ)l3cosh(l(Z0λ))+(Z0λ)2sinh(l(Z0λ)),d35=2lcosh(l(Z0λ))+l2(Z0λ)sinh(l(Z0λ)),d36=(2+l2(Z0λ)2)sinh(l(Z0λ))4(Z0λ)lcosh(l(Z0λ)),d41=2l3cosh(l(Z0+λ))l4(Z0+λ)sinh(l(Z0+λ)),d42=l3(Z0+λ)cosh(l(Z0+λ))+3l2sinh(l(Z0+λ)),d43=(6l+l3(Z0+λ)2)cosh(l(Z0+λ))+6(Z0+λ)l2sinh(l(Z0+λ)),d44=2l3cosh(l(Z0λ))+l4(Z0λ)sinh(l(Z0λ)),d45=l3(Z0λ)cosh(l(Z0λ))3l2sinh(l(Z0λ)),d46=(6l+l3(Z0λ)2)cosh(l(Z0λ))6(Z0λ)l2sinh(l(Z0λ)),d51=l5(Z0+λ)cosh(l(Z0+λ))3l4sinh(l(Z0+λ)),d52=4l3cosh(l(Z0+λ))+l4(Z0+λ)sinh(l(Z0+λ)),d53=8l3(Z0+λ)cosh(l(Z0+λ))+12l2sinh(l(Z0+λ))+l4(Z0+λ)sinh(l(Z0+λ)),d54=l5(Z0λ)cosh(l(Z0λ))+3l4sinh(l(Z0λ)),d55=4l3cosh(l(Z0λ))+l4(Z0λ)sinh(l(Z0λ)),d56=8l3(Z0λ)cosh(l(Z0λ))12l2sinh(l(Z0λ))l4(Z0λ)sinh(l(Z0λ)),d61=4l4(Z0+λ)cosh(l(Z0+λ))+l6(Z0+λ)sinh(l(Z0+λ)),d62=(Z0+λ)l5cosh(l(Z0+λ))5l4sinh(l(Z0+λ)),d63=(20l3+(Z0+λ)2l5)cosh(l(Z0+λ))10l4(Z0+λ)sinh(l(Z0+λ)),d64=4l5cosh(l(Z0λ))l6(Z0λ)sinh(l(Z0λ)),d65=(Z0λ)l5cosh(l(Z0λ))+5l4sinh(l(Z0λ)),d66=(20l3+(Z0λ)2l5)cosh(l(Z0λ))+10l4(Z0λ)sinh(l(Z0λ)),q61=(Z0+λ)l3cosh(l(Z0+λ))+l2sinh(l(Z0+λ)),q62=l2(Z0+λ)sinh(l(Z0+λ)),q63=l2(Z0+λ)2sinh(l(Z0+λ)).

The constants Bis and Cis, i=1,2,3, that appear in eqs. (9)–(10) are obtained by setting B1=1 and solving the resulting non-homogeneous linear system of reduced rank AX=B, where the elements of the matrix A are dij, 1i6, 2j6, X=[B2B3C1C2c3]T and B=[d11d21d31d41d51d61]T.

Appendix C Open two-dimensional channel

For the case of an unbounded two-dimensional channel, U=[B1ˆB2ˆB3ˆC1ˆC2ˆC3ˆ] and the entries of the matrices D1 and D2 are given by

d11=eπZ0,d12=Z0eπZ0,d13=Z02eπZ0,d14=eπZ0,d15=Z0eπZ0,d16=Z02eπZ0,d21=leπZ0,d22=lZ0eπZ0+eπZ0,d23=2Z0eπZ0+leπZ0Z02,d24=leπZ0,d25=Z0leπZ0+eπZ0,d26=2Z0eπZ0leπZ0Z02,d31=l2eπZ0,d32=2leπZ0+l2Z0eπZ0,d33=4lZ0eπZ0+2eπZ0+l2Z02eπZ0,d34=l2eπZ0,d35=2leπZ0+l2Z0eπZ0,d36=4lZ0eπZ0+2eπZ0+l2Z02eπZ0,d41=l3eπZ0,d42=l3Z0eπZ0+3l2eπZ0,d43=6leπZ0+l3Z02eπZ0+6l2Z0eπZ0,d44=l3eπZ0,d45=l3Z0eπZ0+3l2eπZ0,d46=l3Z02eπZ06leπZ0+6Z0l2eπZ0,d51=l4eπZ0,d52=l4Z0eπZ0+4l3eπZ0,d53=12l2eπZ0+l4Z02eπZ0+8l3Z0eπZ0,d54=l4eπZ0,d55=l4Z0eπZ04l3eπZ0,d56=l4Z02eπZ0+12l2eπZ08l3Z0eπZ0,d61=l5eπZ0,d62=l5Z0eπZ0+5l4eπZ0,d63=20l3eπZ0+l5Z02eπZ0+10l4Z0eπZ0,d64=l5eπZ0,d65=l5Z0eπZ0+l45eπZ0,d66=l5(Z02)eπZ020l3eπZ0+10l4Z0eπZ0,q61=l2eπZ0,q62=l2Z0eπZ0,q63=l2Z02eπZ0.

Upon setting Bˆ1=1, we obtain the rest of the constants in the definitions of F+ and F by solving the reduced-rank non-homogeneous system as shown in Appendix A for the finite aspect ratio channel.

Appendix D Weakly non-linear analysis

This is the case of a non-linear and open two-dimensional channel, U=[B1˜B2˜B3˜C1˜C2˜C3˜], and the entries to matrices D1 and D2 are given by

d11=e2πZ0,d12=Z0e2πZ0,d13=Z02e2πZ0,d14=e2πZ0,d15=Z0e2πZ0,d16=Z02e2πZ0,d21=(2π)e2πZ0,d22=(2π)Z0e2πZ0+e2πZ0,d23=2Z0e2πZ0+ae2πZ0Z02,d24=(2π)e2πZ0,d25=Z0(2π)e2πZ0+e2πZ0,d26=2Z0e2πZ0(2π)e2πZ0Z02,d31=(2π)2e2πZ0,d32=2(2π)e2πZ0+(2π)2Z0e2πZ0,d33=4(2π)Z0e2πZ0+2e2πZ0+(2π)2Z02e2πZ0,d34=(2π)2e2πZ0,d35=2(2π)e2πZ0+(2π)2Z0e2πZ0,d36=4(2π)Z0e2πZ0+2e2πZ0+(2π)2Z02e2πZ0,d41=(2π)3e2πZ0,d42=(2π)3Z0e2πZ0+3(2π)2e2πZ0,d43=6(2π)e2πZ0+(2π)3Z02e2πZ0+6(2π)2Z0e2πZ0,d44=(2π)3e2πZ0,d45=(2π)3Z0e2πZ0+3(2π)2e2πZ0,d46=(2π)3Z02e2πZ06(2π)e2πZ0+6Z0(2π)2e2πZ0,d51=(2π)4e2πZ0,d52=(2π)4Z0e2πZ0+4(2π)3e2πZ0,d53=12(2π)2e2πZ0+(2π)4(Z02)e2πZ0+8(2π)3Z0e2πZ0,d54=(2π)4e2πZ0,d55=(2π)4Z0enπZ04(2π)3e2πZ0,d56=(2π)4Z02e2πZ0+12(2π)2e2πZ08(2π)3Z0e2πZ0,d61=(2π)5e2πZ0,d62=(2π)5Z0e2πZ0+5(2π)4e2πZ0,d63=20(2π)3e2πZ0+(2π)5Z02e2πZ0+10(2π)4Z0e2πZ0,d64=(2π)5e2πZ0,d65=(2π)5Z0e2πZ0+(2π)45e2πZ0,d66=(2π)5(Z02)e2πZ020(2π)3e2πZ0+10(2π)4Z0e2πZ0.q61=an2e2πZ0,q62=an2Z0e2πZ0,q63=an2Z02e2πZ0.

As before we set B˜=1 and solve the linear system A[B˜2B˜3C˜1C˜2C˜3]T=B.

The elements of vector H are denoted as follows:

H1=e2πZ0(C˜4Z03+C˜5Z04)e2πZ0(C˜4Z03+C˜5Z04),H2=e2πZ0(3C˜4Z02+4C˜5Z032πC˜4Z032πC˜5Z04)e2πZ0(3B˜4Z02+4B˜5Z03+2πB˜4Z03+2πB˜5Z04),H3=e2πZ0(6C˜4Z0+12C˜5Z024π(3C˜4Z02+4C˜5Z03)+4π2(C˜4Z03+C˜5Z04))e2πZ0(6B˜4Z0+12B˜5Z02+4π(3B˜4Z02+4B˜5Z03)+4π2(B˜4Z03+B˜5Z04)),H4=e2πZ0(6C˜4+24C˜5Z06π(6C˜4Z0+12C˜5Z02)+12π2(3C˜4Z02+4C˜5Z03)8π3(C˜4Z03+C˜5Z04))e2πZ0(6B˜4+24B˜5Z0+6π(6B˜4Z0+12B˜5Z02)+12π2(3B˜4Z02+4B˜5Z03)+8π3(B˜4Z03+B˜5Z04)),H5=e2πZ0(24C˜58π(6C˜4+24C˜5Z0)+24π2(6C˜4Z0+12C˜5Z02)32π3(3C˜4Z02+4C˜5Z03)+16π4(C˜4Z03+C˜5Z04))e2πZ0(24B˜5+8π(6B˜4+24B˜5Z0)+24π2(6B˜4Z0+12B˜5Z02)+32π3(3B˜4Z02+4B˜5Z03)+16π4(B˜4Z03+B˜5Z04)),H6=e2πZ0(240πC˜5+40π2(6C˜4+24C˜5Z0)80π3(6C˜4Z0+12C˜5Z02)+80π4(3C˜4Z02+4C˜5Z03)32π5(C˜4Z03+C˜5Z04)+an2RcC˜4Z03+an2RcC˜5Z04)+e2πZ0(240πB˜5+40π2(6B˜4+24B˜5Z0)+80π3(6B˜4Z0+12B˜5Z02)+80π4(3B˜4Z02+4B˜5Z03)+32π5(B˜4Z03+B˜5Z04)),B˜4=(3Bˆ32Bˆ2π)(16Bˆ3π+eπZ0PrΦ1(Z0))1536π,B˜5=Bˆ3(16Bˆ3π+eπZ0PrΦ1(Z0))1536,C˜4=(3Cˆ3+2Cˆ2π)(16Cˆ3π+eπZ0PrΦ1+(Z0))1536π,C˜5=Cˆ3(16Cˆ3π+eπZ0PrΦ1+(Z0))1536.

Upon application of the continuity conditions at the interface, we obtain the system DˆU=H, where U=[B˜1,B˜2,B˜3,C˜1,C˜2,C˜3]T. The elements of the matrix Dˆ are defined in Appendix C. The expressions for Θ(2) and Θ(2)+ are then given by

Θ(2)=[8e2iπxe2πz[3B˜5(1+8πz+8π2z2)+2π(2B˜3π+B˜4(3+6πz))]+2e2πzπ2[Bˆ22π+Bˆ2(Bˆ3+2Bˆ3πz)+2Bˆ3(π+Bˆ3z(1+πz))]]sin(2πx),Θ(2)+=[8e2iπxe2πz[3C˜5(18πz+8π2z2)+2π(2πC˜3+C˜4(3+6πz))]+2e2πzπ2[Cˆ22π+Cˆ2(Cˆ32Cˆ3πz)+2Cˆ3(Cˆ1π+Cˆ3z(1πz))]]sin(2πx).

References

[1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic stability, Clarendon Press, Oxford, 1961, p. 19.Suche in Google Scholar

[2] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, Cambridge, 2004, p. 38.10.1017/CBO9780511616938Suche in Google Scholar

[3] P. C. Matthews, J. Fluid Mech. 188 (1988), 571–583.10.1017/S0022112088000850Suche in Google Scholar

[4] G. K. Batchelor and J. M. Nitsche, J. Fluid Mech. 227 (1991), 357–391.10.1017/S0022112091000150Suche in Google Scholar

[5] D. Goluskin, preprint (2015), 1–66, https://arxiv.org/abs/1506.01656.Suche in Google Scholar

[6] M. S. D. Wykes and S. B.Dalziel, J. Fluid Mech. 756 (2014), 1027–1057.10.1017/jfm.2014.308Suche in Google Scholar

[7] R. D. Simitev and F. H. Busse, in: Proceedings of the 2010 Summer Program, Center of Turbulence Research, Stanford University, (2010), 485–492.Suche in Google Scholar

[8] N. J. Mueschke, M. J. Andrews and O. Schilling, J. Fluid Mech. 567 (2006), 27.10.1017/S0022112006001959Suche in Google Scholar

[9] N. J. Mueschke and O. Schilling, Phys. Fluids 21 (2009), 014106.10.1063/1.3064120Suche in Google Scholar

[10] N. J. Mueschke and O. Schilling, Phys. Fluids 21 (2009), 014107.10.1063/1.3064121Suche in Google Scholar

[11] D. M. Snider and M. J. Andrews, Phys. Fluids A 6 (1994), 3324–3334.10.1063/1.868065Suche in Google Scholar

[12] G. B. Whitham, Linear and nonlinear waves, Wiley Interscience, Canada, 1999, pp. 184.10.1002/9781118032954Suche in Google Scholar

[13] F. H. Busse and E. W. Bolton, J. Fluid Mech. 146 (1984), 115–125.10.1017/S0022112084001786Suche in Google Scholar

[14] C. Normand, J. Fluid Mech. 143 (1984), 223–242.10.1017/S0022112084001324Suche in Google Scholar

[15] G. Tonda, E. W. Fossa and M. Misale, Int. J. Heat Mass Transf. 71 (2014), 451–458.10.1016/j.ijheatmasstransfer.2013.12.022Suche in Google Scholar

Received: 2017-12-19
Revised: 2018-05-20
Accepted: 2018-06-08
Published Online: 2018-06-20
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2017-0067/html
Button zum nach oben scrollen