Home Modeling Reaction Kinetics of Twin Polymerization via Differential Scanning Calorimetry
Article
Licensed
Unlicensed Requires Authentication

Modeling Reaction Kinetics of Twin Polymerization via Differential Scanning Calorimetry

  • Janett Prehl EMAIL logo , Robin Masser , Peter Salamon and Karl Heinz Hoffmann
Published/Copyright: September 19, 2018

Abstract

We present a kinetic model for the reaction mechanism of acid-catalyzed twin polymerization. Our model characterizes the reaction mechanism not by the reactants, intermediate structures, and products, but via reaction-relevant moieties. We apply our model for three different derivatives of 2,2’-Spirobi[4H-1,3,2-benzodioxasiline] and determine activation energies, reaction enthalpies, and reaction rate constants for the reaction steps in our mechanism. We compare our findings to previously reported values obtained from density functional theory calculations. Furthermore, with this approach we are also able to follow the time development of the concentrations of the reaction-relevant moieties.

Award Identifier / Grant number: PR 1507/1

Funding statement: J. P. thanks the German Research Foundation (DFG) for financial support received within the “FOR 1497: Twin-Polymerisation of Organic–Inorganic Hybrid Monomers to Nanocomposites” (PR 1507/1).

Acknowledgment

J. P. thanks the helpful discussions with Loay ElAlfy and Halit Taskin.

References

[1] S. Grund, P. Kempe, G. Baumann, A. Seifert and S. Spange, Zwillingspolymerisation: ein Weg zur Synthese von Nanokompositen, Angew. Chem. 119 (2007), no. 4, 636–640.10.1002/ange.200504327Search in Google Scholar

[2] T. Ebert, A. Seifert and S. Spange, Twin polymerization – a new principle for hybrid material synthesis, Macromol. Rapid Commun. 36 (2015), 1623–1639, DOI: 10.1002/marc.201500182.Search in Google Scholar PubMed

[3] S. Spange and S. Grund, Nanostructured organic–inorganic composite materials by twin polymerization of hybrid monomers, Adv. Mater. 21 (2009), 2111–2116.10.1002/adma.200802797Search in Google Scholar

[4] T. Ebert, G. Cox, E. Sheremet, O. Gordan, D. R. T. Zahn, F. Simon, et al., Carbon/carbon nanocomposites fabricated by base catalyzed twin polymerization of a si-spiro compound on graphite sheets, Chem. Commun. (Cambrigde, U.K.) 48 (2012), 9867–9869.10.1039/c2cc34775jSearch in Google Scholar PubMed

[5] P. Kempe, T. Löschner, A. A. Auer, A. Seifert, C. Gerhard and S. Spange, Thermally induced twin polymerization of 4h-1,3,2-benzodioxasilines, Chem. Eur. J. 20 (2014), 8040–8053. Includes supporting files via http://dx.doi.org/10.1002/chem.201400038.10.1002/chem.201400038Search in Google Scholar PubMed

[6] S. Spange, P. Kempe, A. Seifert, A. A. Auer, P. Ecorchard, H. Lang, et al., Nanocomposites with sturcture domains of 0.5 to 3 nm by polymerization of silicon spiro compounds, Angew. Chem., Int. Ed. Engl. 48 (2009), no. 44, 8254–8258.10.1002/anie.200901113Search in Google Scholar PubMed

[7] J. Brückner, S. Thieme, F. Böttger-Hiller, I. Bauer, H. T. Grossmann, P. Strubel, et al., Carbon-based anodes for lithium sulfur full cells with high cycle stability, Adv. Funct. Mater. 24 (2014), 1284–1289.10.1002/adfm.201302169Search in Google Scholar

[8] P. Kitschke, A. A. Auer, T. Löschner, A. Seifert, S. Spange, T. Rüffner, et al., Microporous carbon and mesoporous silica by use of twin polymerization: an integrated experimental and theoretical approach to precursor reactivity, ChemPlusChem 79 (2014), no. 7, 1009–1023.10.1002/cplu.201402029Search in Google Scholar

[9] P. Kempe, T. Löschner, D. Adner and S. Spange, Selective ring opening of 4H-1,3,2-benzodioxasiline twin monomers, New J. Chem. 35 (2011), no. 12, 2735–2739.10.1039/c1nj20654kSearch in Google Scholar

[10] T. Löschner, A. Mehner, S. Grund, A. Seifert, A. Pohlers, A. Lange, et al., Ansatz, Herstellung, Hybridmaterialien, Zwillingspolymerisation (see: “Ein modularer Ansatz zur gezielten Herstellung nanostrukturierter Hybridmaterialien: die simultane Zwillingspolymerisation”), Angew. Chem. 124 (2012), no. 13, 3312–3315.10.1002/ange.201108011Search in Google Scholar

[11] A. Richter, Berechnung, Spirosiliciumzwillingsmonomeren (see “Quantenchemische Berechnung zu Spirosiliciumzwillingsmonomeren”), Diploma thesis, TU Chemnitz, 09107 Chemnitz, July 2010.Search in Google Scholar

[12] A. A. Auer, A. Richter, A. V. Berezkin, D. V. Guseva and S. Spange, Theoretical study of twin polymerization – from chemical reactivity to structure formation, Macromol. Theory Simul. 21 (2012), no. 9, 615–628.10.1002/mats.201200036Search in Google Scholar

[13] I. Tchernook, J. Prehl and J. Friedrich, Quantum chemical investigation of the counter anion in the acid catalyzed initiation of 2,2’-spirobi[4h-1,3,2-benzodioxasiline] polymerization, Polymer 60 (2015), 241–251.10.1016/j.polymer.2015.01.042Search in Google Scholar

[14] J. Prehl, T. Schönfelder, J. Friedrich and K. H. Hoffmann, Site dependent atom type ReaxFF for the proton-catalyzed twin polymerization, J. Phys. Chem. C 121 (2017), no. 29, 15984–15992.10.1021/acs.jpcc.7b03219Search in Google Scholar

[15] K. H. Hoffmann and J. Prehl, Modeling the structure formation process of twin polymerization, Reac. Kinet. Mech. Cat. 123 (2018), 367–383.10.1007/s11144-017-1303-ySearch in Google Scholar

[16] M. Abd-Elghany, T. M. Klapötke, A. Elbeih and S. Zeman, Investigation of different thermal analysis techniques to determine the decomposition kinetics of ϵ-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane with reduced sensitivity and its cured pbx, J. Anal. Appl. Pyrolysis 126 (2017), 267–274.10.1016/j.jaap.2017.05.020Search in Google Scholar

[17] A. Fernández, M. Ruiz-Bermejoa and J. L. de la Fuente, Modelling the kinetics and structural property evolution of a versatile reaction: aqueous HCN polymerization, Phys. Chem. Chem. Phys. 20 (2018) 17353–17366, DOI: 10.1039/C8CP01662C.Search in Google Scholar PubMed

[18] G. Gee and H. W. Melville, The kinetics of polymerization reactions, Rubber Chem. Technol. 18 (1945), no. 2, 223–235.10.5254/1.3546722Search in Google Scholar

[19] P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953.Search in Google Scholar

[20] V. I. Irzhak, M. L. Tai, N. I. Peregudov and T. F. Irzhak, Concept of bond blocks in the kinetics of polycondensation processes, Colloid Polym. Sci. 272 (1994), 523–529.10.1007/BF00653216Search in Google Scholar

[21] F. R. Mayo and F. M. Lewis, Copolymerization. i. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate, J. Am. Chem. Soc. 66 (1944), no. 9, 1594–1601.10.1021/ja01237a052Search in Google Scholar

[22] A. G. Mikos, C. G. Takoudis and N. A. Peppas, Kinetic modeling of copolymerization/cross-linking reactions, Macromolecules 19 (1986), 2174–2182.10.1021/ma00162a012Search in Google Scholar

[23] F. T. Özaltin, B. Dereli, Ö. Karahan, S. Salman and V. Aviyente, Solvent effects on free-radical copolymerization of styrene and 2-hydroxyethyl methacrylate: a dft study, New J. Chem. 38 (2014), 170–178.10.1039/C3NJ00820GSearch in Google Scholar

[24] S. R. Logan, The origin and status of the arrhenius equation, J. Chem. Educ. 59 (1982), no. 4, 279–281.10.1021/ed059p279Search in Google Scholar

Received: 2018-09-10
Accepted: 2018-09-10
Published Online: 2018-09-19
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0057/html
Scroll to top button