Startseite A general size-biased distribution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A general size-biased distribution

  • Alexander E. Patkowski ORCID logo EMAIL logo
Veröffentlicht/Copyright: 25. Juli 2023

Abstract

We generalize a size-biased distribution related to the Riemann xi-function using the work of Ferrar. Some analysis and properties of this more general distribution are offered as well.

MSC 2020: 11M06; 60E07

References

[1] P. Biane, J. Pitman and M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. (N. S.) 38 (2001), no. 4, 435–465. 10.1090/S0273-0979-01-00912-0Suche in Google Scholar

[2] A. A. Borovkov, Probability Theory, Universitext, Springer, London, 2013. 10.1007/978-1-4471-5201-9Suche in Google Scholar

[3] K. L. Chung, Excursions in Brownian motion, Ark. Mat. 14 (1976), no. 2, 155–177. 10.1007/BF02385832Suche in Google Scholar

[4] H. M. Edwards, Riemann’s Zeta Function, Pure Appl. Math. 58, Academic Press, New York, 1974. Suche in Google Scholar

[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms. Vol. I, McGraw-Hill, New York, 1954. Suche in Google Scholar

[6] W. L. Ferrar, Some Solutions of the Equation F(t) = F(t-1), J. Lond. Math. Soc. 11 (1936), no. 2, 99–103. 10.1112/jlms/s1-11.2.99Suche in Google Scholar

[7] R. E. Gaunt, Inequalities for modified Bessel functions and their integrals, J. Math. Anal. Appl. 420 (2014), no. 1, 373–386. 10.1016/j.jmaa.2014.05.083Suche in Google Scholar

[8] F. W. J. Olver, Asymptotics and Special Functions, Comput. Sci. Appl. Math., Academic Press, New York, 1974. Suche in Google Scholar

[9] R. B. Paris and D. Kaminski, Asymptotics and Mellin–Barnes Integrals, Encyclopedia Math. Appl. 85, Cambridge University, Cambridge, 2001. 10.1017/CBO9780511546662Suche in Google Scholar

[10] L. Smith and P. Diaconis, Honest Bernoulli excursions, J. Appl. Probab. 25 (1988), no. 3, 464–477. 10.2307/3213976Suche in Google Scholar

[11] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University, New York, 1986. Suche in Google Scholar

Received: 2023-01-16
Revised: 2023-04-21
Accepted: 2023-07-04
Published Online: 2023-07-25
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2023-0003/html
Button zum nach oben scrollen