Home Around the Świątkowski-type conditions
Article
Licensed
Unlicensed Requires Authentication

Around the Świątkowski-type conditions

  • Małgorzata Filipczak ORCID logo and Małgorzata Terepeta ORCID logo EMAIL logo
Published/Copyright: June 1, 2023

Abstract

In this paper, we will focus on different types of Świątkowski conditions: Świątkowski, strong Świątkowski and weak Świątkowski conditions. We present the main properties of the families of functions fulfilling such conditions.

Acknowledgements

The authors wish to express their thanks to the referees for several helpful comments that led to improving the final version of this paper. We would like to thank Joanna Smyczyńska (the daughter of Professor T. Świątkowski) and the Rector’s Historical Commission (Lodz University of Technology) for the photos of the professor.

References

[1] R. Aron, D. García and M. Maestre, Linearity in non-linear problems, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), no. 1, 7–12. Search in Google Scholar

[2] R. Aron, V. I. Gurariy and J. B. Seoane, Lineability and spaceability of sets of functions on , Proc. Amer. Math. Soc. 133 (2005), no. 3, 795–803. 10.1090/S0002-9939-04-07533-1Search in Google Scholar

[3] R. M. Aron, L. Bernal González, D. M. Pellegrino and J. B. Seoane Sepúlveda, Lineability: The Search for Linearity in Mathematics, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2016. 10.1201/b19277Search in Google Scholar

[4] R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on , Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25–31. 10.36045/bbms/1172852242Search in Google Scholar

[5] T. Banakh, M. G. Filipczak and J. Wódka, Returning functions with closed graph are continuous, Math. Slovaca 70 (2020), no. 2, 297–304. 10.1515/ms-2017-0352Search in Google Scholar

[6] A. Bartoszewicz, M. Bienias and S. Gła̧b, Lineability, algebrability and strong algebrability of some sets in or , Traditional and Present-Day Topics in Real Analysis, University of Łódź, Łódź (2013), 213–232. 10.18778/7525-971-1.14Search in Google Scholar

[7] A. Bartoszewicz, M. Filipczak and M. Terepeta, Lineability of linearly sensitive functions, Results Math. 75 (2020), no. 2, Paper No. 64. 10.1007/s00025-020-01187-3Search in Google Scholar

[8] A. Bartoszewicz, M. Filipczak and M. Terepeta, On algebraic properties of the family of weakly Świątkowski functions, Results Math. 78 (2023), no. 3, Paper No. 87. 10.1007/s00025-023-01867-wSearch in Google Scholar

[9] A. Bartoszewicz and S. Gła̧b, Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), no. 3, 827–835. 10.1090/S0002-9939-2012-11377-2Search in Google Scholar

[10] F. Bayart and L. Quarta, Algebras in sets of queer functions, Israel J. Math. 158 (2007), 285–296. 10.1007/s11856-007-0014-xSearch in Google Scholar

[11] L. Bernal-González, D. Pellegrino and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N. S.) 51 (2014), no. 1, 71–130. 10.1090/S0273-0979-2013-01421-6Search in Google Scholar

[12] A. M. Bruckner, J. G. Ceder and M. Weiss, Uniform limits of Darboux functions, Colloq. Math. 15 (1966), 65–77. 10.4064/cm-15-1-65-77Search in Google Scholar

[13] A. M. Bruckner and J. L. Leonard, Derivatives, Amer. Math. Monthly 73 (1966), no. 4, 24–56. 10.1080/00029890.1966.11970916Search in Google Scholar

[14] E. P. Dolženko, Boundary properties of arbitrary functions, Math. USSR Izv. 31 (1967), 3–14. Search in Google Scholar

[15] M. Filipczak, G. Ivanova and J. Wódka, Comparison of some families of real functions in porosity terms, Math. Slovaca 67 (2017), no. 5, 1155–1164. 10.1515/ms-2017-0039Search in Google Scholar

[16] Z. Grande, On a subclass of the family of Darboux functions, Colloq. Math. 117 (2009), no. 1, 95–104. 10.4064/cm117-1-6Search in Google Scholar

[17] G. Ivanova and A. Karasińska, About porosity of some Świątkowski functions in the space of quasi-continuous functions, Quaest. Math. 44 (2021), no. 1, 37–43. 10.2989/16073606.2019.1671525Search in Google Scholar

[18] G. Ivanova and E. Wagner-Bojakowska, On some modification of Świątkowski property, Tatra Mount. 58 (2014), 101–109. 10.2478/tmmp-2014-0009Search in Google Scholar

[19] G. Ivanova and E. Wagner-Bojakowska, On some modification of Darboux property, Math. Slovaca 66 (2016), no. 1, 79–88. 10.1515/ms-2015-0117Search in Google Scholar

[20] G. Ivanova and E. Wagner-Bojakowska, Porous subsets in the space of functions having the Baire property, Math. Slovaca 67 (2017), no. 6, 1333–1344. 10.1515/ms-2017-0055Search in Google Scholar

[21] I. Jóźwik and M. Terepeta, Profesor Tadeusz Świątkowski – dobry duch Politechniki Łódzkiej, Uniw. Jana Długosza w Częstochowie Mathematics 19 (2014), 277–286. Search in Google Scholar

[22] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197. 10.4064/fm-19-1-184-197Search in Google Scholar

[23] E. Kocela and T. Świątkowski, On some characterization of uniform convergence, Zeszyty Nauk. Politech. Łódz. Mat. (1976), no. 7, 11–15. Search in Google Scholar

[24] J. Kucner, Funkcje posiadające silną własność Świątkowskiego, PhD thesis, Łódź, 2002. Search in Google Scholar

[25] A. Maliszewski, On the limits of strong Świątkowski function, Zeszyty Nauk. Politech. Łódz. Mat. (1995), no. 27, 87–93. Search in Google Scholar

[26] A. Maliszewski, Sums and products of quasi-continuous functions, Real Anal. Exchange 21 (1995/96), no. 1, 320–329. 10.2307/44153922Search in Google Scholar

[27] A. Maliszewski, Darboux Property and Quasi-continuity: A Uniform Approach, Wydaw. Uczelniane WSP, Warsaw, 1996. Search in Google Scholar

[28] T. Mańk and T. Świątkowski, On some class of functions with Darboux’s characteristic, Zeszyty Nauk. Politech. Łódz. Mat. (1978), no. 11, 5–10. Search in Google Scholar

[29] M. Marciniak and P. Szczuka, On internally strong Świa̧tkowski functions, Real Anal. Exchange 38 (2012/13), no. 2, 259–272. 10.14321/realanalexch.38.2.0259Search in Google Scholar

[30] R. Menkyna, On the sums of lower semicontinuous strong Świątkowski functions, Real Anal. Exchange 39 (2013/14), no. 1, 15–32. 10.14321/realanalexch.39.1.0015Search in Google Scholar

[31] T. Natkaniec and J. Wódka, On the pointwise limits of sequences of Świątkowski functions, Czechoslovak Math. J. 68(143) (2018), no. 4, 875–888. 10.21136/CMJ.2018.0022-17Search in Google Scholar

[32] C. J. Neugebauer, Darboux property for functions of several variables, Trans. Amer. Math. Soc. 107 (1963), 30–37. 10.1090/S0002-9947-1963-0148811-6Search in Google Scholar

[33] H. Pawlak and R. Pawlak, On some conditions equivalent to the condition of Świątkowski for Darboux functions of one and two variables, Zeszyty Nauk. Politech. Łódz. Mat. 16 (1983), 33–40. 10.1515/dema-1983-0320Search in Google Scholar

[34] H. Pawlak and W. Wilczyński, On the condition of Darboux and Świątkowski for functions of two variables, Zeszyty Nauk. Politech. Łódz. Mat. 15 (1982), 31–35. Search in Google Scholar

[35] R. Pawlak, Przekształcenia Darboux, Uniwersytet Łódzki, Łódź, 1985. Search in Google Scholar

[36] R. J. Pawlak, On Świątkowski functions, Acta Univ. Lodz. Folia Math. 3 (1989), 77–85. Search in Google Scholar

[37] T. Radaković, Über Darbouxsche und stetige Funktionen, Monatsh. Math. Phys. 38 (1931), no. 1, 117–122. 10.1007/BF01700686Search in Google Scholar

[38] T. Świątkowski, On the conditions of monotonicity of functions, Fund. Math. 59 (1966), 189–201. 10.4064/fm-59-2-189-201Search in Google Scholar

[39] P. Szczuka, Maximal classes for the family of strong Świątkowski functions, Real Anal. Exchange 28 (2002/03), no. 2, 429–437. 10.14321/realanalexch.28.2.0429Search in Google Scholar

[40] H. P. Thielman, Types of functions, Amer. Math. Monthly 60 (1953), 156–161. 10.1080/00029890.1953.11988260Search in Google Scholar

[41] J. Wódka, Subsets of some families of real functions and their algebrability, Linear Algebra Appl. 459 (2014), 454–464. 10.1016/j.laa.2014.07.015Search in Google Scholar

[42] J. Wódka, On the uniform limits of sequences of Świątkowski functions, Lith. Math. J. 57 (2017), no. 2, 259–265. 10.1007/s10986-017-9359-ySearch in Google Scholar

[43] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54. 10.1090/S0002-9947-1950-0037338-9Search in Google Scholar

[44] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987/88), no. 2, 314–350. 10.2307/44151885Search in Google Scholar

Received: 2022-12-13
Revised: 2023-04-01
Accepted: 2023-04-02
Published Online: 2023-06-01
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2022-1043/html
Scroll to top button