Startseite Bochner formula in generalized (k,μ)-space forms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bochner formula in generalized (k,μ)-space forms

  • Shanmukha B EMAIL logo
Veröffentlicht/Copyright: 27. Juni 2023

Abstract

In this article, we studied Green’s theorem and the Bochner formula. Further, we apply the Bochner formula to generalized ( k , μ ) -space forms and show that the generalized ( k , μ ) space form is either isometric to a sphere or a certain warped product under some geometric conditions.

MSC 2020: 53C15; 53C20; 53C42

References

[1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157–183. 10.1007/BF02772217Suche in Google Scholar

[2] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl. 26 (2008), no. 6, 656–666. 10.1016/j.difgeo.2008.04.014Suche in Google Scholar

[3] A. Barros, Applications of Bochner formula to minimal submanifold of the sphere, J. Geom. Phys. 44 (2002), no. 2–3, 196–201. 10.1016/S0393-0440(02)00061-XSuche in Google Scholar

[4] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976. 10.1007/BFb0079307Suche in Google Scholar

[5] A. Carriazo and V. Martín-Molina, Generalized ( κ , μ ) -space forms and D a -homothetic deformations, Balkan J. Geom. Appl. 16 (2011), no. 1, 37–47. Suche in Google Scholar

[6] A. Carriazo, V. Martín Molina and M. M. Tripathi, Generalized ( κ , μ ) -space forms, Mediterr. J. Math. 10 (2013), no. 1, 475–496. 10.1007/s00009-012-0196-2Suche in Google Scholar

[7] B.-Y. Chen, Geometry of Submanifolds, Pure Appl. Math. 22, Marcel Dekker, New York, 1973. Suche in Google Scholar

[8] M. Jamali and M. H. Shahid, Application of Bochner formula to generalized Sasakian space forms, Afr. Mat. 29 (2018), no. 7–8, 1135–1139. 10.1007/s13370-018-0611-3Suche in Google Scholar

[9] T. Koufogiorgos, Contact Riemannian manifolds with constant ϕ-sectional curvature, Tokyo J. Math. 20 (1997), no. 1, 13–22. 10.3836/tjm/1270042394Suche in Google Scholar

[10] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. 10.2969/jmsj/01430333Suche in Google Scholar

[11] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tohoku Math. J. (2) 12 (1960), 459–476. 10.2748/tmj/1178244407Suche in Google Scholar

Received: 2022-09-16
Revised: 2023-04-30
Accepted: 2023-05-01
Published Online: 2023-06-27
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2022-1005/html
Button zum nach oben scrollen