Startseite Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations

  • Chellamuthu Gokila ORCID logo und Muniyagounder Sambath ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper deals with the stochastic Zika virus model within the human and mosquito population. Firstly, we prove that there exists a global positive solution. Further, we found the condition for a viral infection to be extinct. Besides that, we discuss the existence of a unique ergodic stationary distribution through a suitable Lyapunov function. The stationary distribution validates the occurrence of infection in the population. From that, we obtain the threshold value for prevail and disappear of disease within the population. Through the numerical simulations, we have verified the reproduction ratio R 0 S as stated in our theoretical findings.

2010 Mathematics Subject Classification: 92D30; 34F05; 34D20

Corresponding author: Muniyagounder Sambath, Department of Mathematics, Periyar University, Salem 636 011, India, E-mail:

Acknowledgment

The authors would like to thank the anonymous reviewers and the editors for their valuable suggestions for the improvement of the paper. The work of first author was supported by the DST-INSPIRE Fellowship (No. DST/INSPIRE Fellowship/2017/IF170244), Department of Science and Technology, New Delhi. The second author is thankful to UGC(BSR)-Start Up Grant (Grant No.F.30-361/2017(BSR)), University Grants Commission, New Delhi and the DST-FIST (Grant No.SR/FST/MSI-115/2016(Level-I)), DST, New Delhi for providing financial support.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] T. A. Perkins, A. S. Siraj, C. W. Ruktanonchai, M. U. Kraemer, and A. J. Tatem, “Model-based projections of Zika virus infections in childbearing women in the Americas,” Nat. Microbiol., vol. 1, no. 9, p. 16126, 2016. https://doi.org/10.1038/nmicrobiol.2016.126.Suche in Google Scholar PubMed

[2] A. D. Haddow, A. J. Schuh, C. Y. Yasuda, et al.., “Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage,” PLoS Neglected Trop. Dis., vol. 6, no. 2, p. e1477, 2012. https://doi.org/10.1371/journal.pntd.0001477.Suche in Google Scholar PubMed PubMed Central

[3] R. W. Malone, J. Homan, M. V. Callahan, et al.., “Zika virus: medical countermeasure development challenges,” PLoS Neglected Trop. Dis., vol. 10, no. 3, 2016, Art no. e0004530. https://doi.org/10.1371/journal.pntd.0004530.Suche in Google Scholar PubMed PubMed Central

[4] S. Cauchemez, M. Besnard, P. Bompard, et al.., “Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study,” Lancet, vol. 387, no. 10033, pp. 2125–2132, 2016. https://doi.org/10.1016/s0140-6736(16)00651-6.Suche in Google Scholar

[5] A. M. Oster, “Iinterim guidance for prevention of sexual transmission of Zika virus-United States, 2016,” MMWR. Morb. Mortal. Wkly Rep., vol. 65, pp. 120–121, 2016. https://doi.org/10.15585/mmwr.mm6512e3.Suche in Google Scholar PubMed

[6] D. Gatherer and A. Kohl, “Zika virus: a previously slow pandemic spreads rapidly through the Americas,” J. Gen. Virol., vol. 97, no. 2, pp. 269–273, 2016. https://doi.org/10.1099/jgv.0.000381.Suche in Google Scholar PubMed

[7] D. Musso and D. J. Gubler, “Zika virus: following the path of dengue and Chikungunya?” Lancet, vol. 386, no. 9990, pp. 243–244, 2015. https://doi.org/10.1016/s0140-6736(15)61273-9.Suche in Google Scholar PubMed

[8] M. Awais, F. S. Alshammari, S. Ullah, M. A. Khan, and S. Islam, “Modeling and simulation of the novel coronavirus in Caputo derivative,” Results Phys., vol. 19, p. 103588, 2020. https://doi.org/10.1016/j.rinp.2020.103588.Suche in Google Scholar PubMed PubMed Central

[9] M. A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative,” Alex. Eng. J., vol. 59, pp. 2379–2389, 2020. https://doi.org/10.1016/j.aej.2020.02.033.Suche in Google Scholar

[10] M. A. Khan, A. Atangana, and E. Alzahrani, “The dynamics of COVID-19 with quarantined and isolation,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–22, 2020. https://doi.org/10.1186/s13662-020-02882-9.Suche in Google Scholar PubMed PubMed Central

[11] C. J. Carlson, E. R. Dougherty, and W. Getz, “An ecological assessment of the pandemic threat of Zika virus,” PLoS Neglected Trop. Dis., vol. 10, no. 8, 2016, Art no. e0004968. https://doi.org/10.1371/journal.pntd.0004968.Suche in Google Scholar PubMed PubMed Central

[12] A. M. Elaiw, T. O. Alade, and S. M. Alsulami, “Stability of a within-host Chikungunya virus dynamics model with latency,” J. Comput. Anal. Appl., vol. 26, no. 5, 2019.Suche in Google Scholar

[13] Q. Liu, D. Jiang, T. Hayat, and A. Alsaedi, “Stationary distribution of a stochastic within-host dengue infection model with immune response and regime switching,” Phys. Stat. Mech. Appl., vol. 526, p. 121057, 2019. https://doi.org/10.1016/j.physa.2019.121057.Suche in Google Scholar

[14] F. B. Agusto, S. Bewick, and W. F. Fagan, “Mathematical model of Zika virus with vertical transmission,” Infect. Dis. Model., vol. 2, no. 2, pp. 244–267, 2017. https://doi.org/10.1016/j.idm.2017.05.003.Suche in Google Scholar PubMed PubMed Central

[15] K. Best and A. S. Perelson, “Mathematical modeling of within-host Zika virus dynamics,” Immunol. Rev., vol. 285, no. 1, pp. 81–96, 2018. https://doi.org/10.1111/imr.12687.Suche in Google Scholar PubMed PubMed Central

[16] Y. Cai, K. Wang, and W. Wang, “Global transmission dynamics of a Zika virus model,” Appl. Math. Lett., vol. 92, pp. 190–195, 2019. https://doi.org/10.1016/j.aml.2019.01.015.Suche in Google Scholar

[17] E. Bonyah and K. O. Okosun, “Mathematical modeling of Zika virus,” Asian Pac. J. Trop. Dis., vol. 6, no. 9, pp. 673–679, 2016. https://doi.org/10.1016/s2222-1808(16)61108-8.Suche in Google Scholar

[18] E. O. Alzahrani, W. Ahmad, M. A. Khan, and S. J. Malebary, “Optimal control strategies of Zika virus model with mutant,” Commun. Nonlinear Sci. Numer. Simulat., vol. 93, p. 105532, 2021. https://doi.org/10.1016/j.cnsns.2020.105532.Suche in Google Scholar

[19] E. Bonyah, M. A. Khan, K. O. Okosun, and S. Islam, “A theoretical model for Zika virus transmission,” PloS One, vol. 12, no. 10, 2017, Art no. e0185540. https://doi.org/10.1371/journal.pone.0185540.Suche in Google Scholar PubMed PubMed Central

[20] E. Bonyah, M. A. Khan, K. O. Okosun, and J. F. Gómez-Aguilar, “On the co-infection of dengue fever and Zika virus,” Optim. Contr. Appl. Methods, vol. 40, no. 3, pp. 394–421, 2019. https://doi.org/10.1002/oca.2483.Suche in Google Scholar

[21] M. A. Khan, S. W. Shah, S. Ullah, and J. F. Gómez-Aguilar, “A dynamical model of asymptomatic carrier Zika virus with optimal control strategies,” Nonlinear Anal. R. World Appl., vol. 50, pp. 144–170, 2019. https://doi.org/10.1016/j.nonrwa.2019.04.006.Suche in Google Scholar

[22] M. A. Khan, S. Ullah, and M. Farhan, “The dynamics of Zika virus with Caputo fractional derivative,” AIMS Math., vol. 4, no. 1, pp. 134–146, 2019. https://doi.org/10.3934/math.2019.1.153.Suche in Google Scholar

[23] B. Hasan, M. Singh, D. Richards, and A. Blicblau, “Mathematical modelling of Zika virus as a mosquito-borne and sexually transmitted disease with diffusion effects,” Math. Comput. Simulat., vol. 166, pp. 56–75, 2019. https://doi.org/10.1016/j.matcom.2019.04.007.Suche in Google Scholar

[24] N. Dalal, D. Greenhalgh, and X. Mao, “A stochastic model of AIDS and condom use,” J. Math. Anal. Appl., vol. 325, no. 1, pp. 36–53, 2007. https://doi.org/10.1016/j.jmaa.2006.01.055.Suche in Google Scholar

[25] X. Zhang, D. Jiang, T. Hayat, and B. Ahmad, “Dynamical behavior of a stochastic SVIR epidemic model with vaccination,” Phys. Stat. Mech. Appl., vol. 483, pp. 94–108, 2017. https://doi.org/10.1016/j.physa.2017.04.173.Suche in Google Scholar

[26] D. Clancy, “A stochastic SIS infection model incorporating indirect transmission,” J. Appl. Probab., vol. 42, no. 3, pp. 726–737, 2005. https://doi.org/10.1239/jap/1127322023.Suche in Google Scholar

[27] Z. Huang, Q. Yang, and J. Cao, “Complex dynamics in a stochastic internal HIV model,” Chaos, Solit. Fractals, vol. 44, no. 11, pp. 954–963, 2011. https://doi.org/10.1016/j.chaos.2011.07.017.Suche in Google Scholar

[28] A. Lahrouz and L. Omari, “Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence,” Stat. Probab. Lett., vol. 83, no. 4, pp. 960–968, 2013. https://doi.org/10.1016/j.spl.2012.12.021.Suche in Google Scholar

[29] X. Mu, Q. Zhang, H. Wu, and X. Li, “Ergodicity and extinction in a stochastic susceptible-infected-recovered-susceptible epidemic model with influence of information,” Math. Popul. Stud., vol. 26, no. 1, pp. 1–26, 2019. https://doi.org/10.1080/08898480.2018.1493869.Suche in Google Scholar

[30] M. Otero and H. G. Solari, “Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito,” Math. Biosci., vol. 223, no. 1, pp. 32–46, 2010. https://doi.org/10.1016/j.mbs.2009.10.005.Suche in Google Scholar PubMed

[31] Y. Wang, D. Jiang, T. Hayat, and B. Ahmad, “A stochastic HIV infection model with T-cell proliferation and CTL immune response,” Appl. Math. Comput., vol. 315, pp. 477–493, 2017. https://doi.org/10.1016/j.amc.2017.07.062.Suche in Google Scholar

[32] C. Ji, “The threshold for a stochastic HIV-1 infection model with Beddington–DeAngelis incidence rate,” Appl. Math. Model., vol. 64, pp. 168–184, 2018. https://doi.org/10.1016/j.apm.2018.07.031.Suche in Google Scholar

[33] Y. Lin, D. Jiang, and S. Wang, “Stationary distribution of a stochastic SIS epidemic model with vaccination,” Phys. Stat. Mech. Appl., vol. 394, pp. 187–197, 2014. https://doi.org/10.1016/j.physa.2013.10.006.Suche in Google Scholar

[34] P. Wang and J. Jia, “Stationary distribution of a stochastic SIRD epidemic model of Ebola with double saturated incidence rates and vaccination,” Adv. Differ. Equ., vol. 2019, no. 1, pp. 1–16, 2019. https://doi.org/10.1186/s13662-019-2352-5.Suche in Google Scholar

[35] X. Zhang and H. Peng, “Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching,” Appl. Math. Lett., vol. 102, p. 106095, 2019.10.1016/j.aml.2019.106095Suche in Google Scholar

[36] X. Mao, Stochastic Differential Equations and Applications, Chichester, Horwood, 1997.Suche in Google Scholar

[37] R. Khasminskii, Stochastic Stability of Differential Equations, Berlin, Springer Science & Business Media, 2011.10.1007/978-3-642-23280-0Suche in Google Scholar

[38] D. J. Higham, “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM Rev., vol. 43, no. 3, pp. 525–546, 2001. https://doi.org/10.1137/s0036144500378302.Suche in Google Scholar

Received: 2020-07-05
Revised: 2020-12-29
Accepted: 2021-07-29
Published Online: 2021-08-23
Published in Print: 2023-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities
  4. Stochastic dynamics of dielectric elastomer balloon with viscoelasticity under pressure disturbance
  5. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle
  6. Fractional-order generalized Legendre wavelets and their applications to fractional Riccati differential equations
  7. Battery discharging model on fractal time sets
  8. Adaptive neural network control of second-order underactuated systems with prescribed performance constraints
  9. Optimal control for dengue eradication program under the media awareness effect
  10. Shifted Legendre spectral collocation technique for solving stochastic Volterra–Fredholm integral equations
  11. Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations
  12. Mathematical analysis of the impact of vaccination and poor sanitation on the dynamics of poliomyelitis
  13. Anti-sway method for reducing vibrations on a tower crane structure
  14. Stable soliton solutions to the time fractional evolution equations in mathematical physics via the new generalized G / G -expansion method
  15. Convergence analysis of online learning algorithm with two-stage step size
  16. An estimative (warning) model for recognition of pandemic nature of virus infections
  17. Interaction among a lump, periodic waves, and kink solutions to the KP-BBM equation
  18. Global exponential stability of periodic solution of delayed discontinuous Cohen–Grossberg neural networks and its applications
  19. An efficient class of fourth-order derivative-free method for multiple-roots
  20. Numerical modeling of thermal influence to pollutant dispersion and dynamics of particles motion with various sizes in idealized street canyon
  21. Construction of breather solutions and N-soliton for the higher order dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising from wave patterns
  22. Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation
  23. Construction of complexiton-type solutions using bilinear form of Hirota-type
  24. Inverse estimation of time-varying heat transfer coefficients for a hollow cylinder by using self-learning particle swarm optimization
  25. Infinite line of equilibriums in a novel fractional map with coexisting infinitely many attractors and initial offset boosting
  26. Lump solutions to a generalized nonlinear PDE with four fourth-order terms
  27. Quantum motion control for packaging machines
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0145/html
Button zum nach oben scrollen