Startseite Radiant Heat Transfer in Nitrogen-Free Combustion Environments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radiant Heat Transfer in Nitrogen-Free Combustion Environments

  • A. Marzouk Osama EMAIL logo
Veröffentlicht/Copyright: 7. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

When mathematically calculating the radiant heat flux during combustion, the radiant property of a gaseous mixture can be approximated as a weighted sum of the radiant properties of fictitious gases to give an equivalent effect of the actual gas mixture. This concept has been in use for many years. However, it was initially tailored to product gases in air-combustion environment. With the advent and progress in nitrogen-free combustion (particularly for environmental purposes), the chemical composition of the combustion gases is highly altered and existing models should be assessed for their suitability in these new environments. We carried out this task, which was motivated by our recent modeling work that revealed that a new model should be developed for nitrogen-free combustion environments. The model proposed here has four participating gases plus one transparent gas and its performance in predicting radiant heat transfer in 3D benchmark problems is evaluated in comparison with existing models, using the discrete-ordinate method for directional radiation domain combined with the finite-volume method of the spatial domain.

PACS: 44.40.+a
MSC 2010: 78M50; 74P10; 78A40; 35Q79; 80A20

Acknowledgements

The author deeply appreciates feedback from E. David Huckaby (U.S. Department of Energy, National Energy Technology Laboratory). The author appreciates the help of Dr. Chungen Yin (Aalborg University, Denmark) by sharing a computer code that performs EWB calculations of the total emissivity.

References

[1] J. H. Lienhard IV and J. H. Lienhard V, A heat transfer textbook, Fourth Edition, Phlogiston Press, Massachusetts, USA, 2012.Suche in Google Scholar

[2] R. C. Brinker, The surveying handbook, Springer, 2013.Suche in Google Scholar

[3] R. L. Braun and A. K. Burnham, Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models, Energy & Fuels 1(2) (1987), 153–161.10.1021/ef00002a003Suche in Google Scholar

[4] D. J. Higham, Modeling and simulating chemical reactions, SIAM Rev. 50(2) (2008), 347–368.10.1137/060666457Suche in Google Scholar

[5] M. Thirumaleshwar, Fundamentals of heat and mass transfer, Second Impression, Pearson Education India, India, 2009.Suche in Google Scholar

[6] D. C. Haworth and M. F. Modest, Radiative heat transfer in turbulent combustion systems: theory and applications, Springer, 2016.10.1007/978-3-319-27291-7Suche in Google Scholar

[7] H. C. Hottel, Chapter 4: radiant heat transmission, in: Heat transmission, Third Edition, W. H. McAdams (Editor), McGraw-Hill, New York, 1954.Suche in Google Scholar

[8] H. C. Hottel, The Melchett lecture for 1960; Radiative transfer in combustion chambers, Inst J. Fuel 34 (1961), 220–234.Suche in Google Scholar

[9] A. F. Sarofim, Radiant Heat Transmission in Enclosures, Sc.D. Dissertation, Department of Engineering Chemical, Massachusetts Institute of Technology, Cambridge, USA, 1962.Suche in Google Scholar

[10] H. C. Hottel and A. F. Sarofim, Radiative transfer, McGraw-Hill, New York, USA, 1967.Suche in Google Scholar

[11] M. K. Denison and B. W. Webb, A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers, J. Heat Transfer 115 (1993), 1004–1012.10.1115/1.2911354Suche in Google Scholar

[12] M. K. Denison and B. W. Webb, The spectral line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media, Heat Transfer J. 117(2) (1995), 359–365.10.1115/1.2822530Suche in Google Scholar

[13] L. Pierrot, P. Riviére, A. Soufiani, and J. Taine, A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases, Quant J. Spectrosc. Radiat. 62(5) (1999), 609–624.10.1016/S0022-4073(98)00124-1Suche in Google Scholar

[14] M. F. Modest and H. Zhang, The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures, J. Heat Transfer 124(1) (2002), 30–38.10.1115/1.1418697Suche in Google Scholar

[15] M. F. Modest, Radiative heat transfer, Third Edition, Academic Press, USA, 2013.10.1016/B978-0-12-386944-9.50023-6Suche in Google Scholar

[16] C. Yin, Refined weighted sum of gray gases model for air-fuel combustion and its impacts, Energy & Fuels 27(10) (2013), 6287–6294.10.1021/ef401503rSuche in Google Scholar

[17] R. Siegel and J. R. Howell, Thermal radiation heat transfer, Fourth Edition, Taylor & Francis, USA, 2002.Suche in Google Scholar

[18] D. De Simone, The direct use of coal : prospects and problems of production and combustion, report by the Office of Technology Assessment, Congress of the States United, Washington, D.C., USA, 1979.Suche in Google Scholar

[19] B. Metz, Carbon dioxide capture and storage, special report of the intergovernmental panel on climate change (IPCC). Working Group III, Cambridge University Press, 2005.Suche in Google Scholar

[20] A. Soufiani and J. Taine, High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2, Int. J. Heat Mass Transfer 40(4) (1997), 987–991.10.1016/0017-9310(96)00129-9Suche in Google Scholar

[21] EM2C Lab: Laboratoire d’Energetique Moleculaire et Macroscopique, Combustion du CNR et Ecole Centrale Paris Translation: Molecular and Macroscopic Molecular Energetics Laboratory of CNRS [French national center for scientific research] and Ecole Centrale Paris [Paris Central School], Paris, France, http://www.em2c.ecp.fr/.Suche in Google Scholar

[22] A. Soufiani, J.-M. Hartmann and J. Taine, Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive-radiative transfer, Journal of Quantitative Spectroscopy & Radiative Transfer 33(3) (1985), 243–257.10.1016/0022-4073(85)90154-2Suche in Google Scholar

[23] P. T. Boggs and J. W. Tolle, Sequential quadratic programming for large-scale nonlinear optimization, J. Comput. Appl. Math. 124(1–2) (2000), 123–137.10.1016/S0377-0427(00)00429-5Suche in Google Scholar

[24] W. L. Grosshandler, RADCAL: a narrow-band model for radiation calculations in a combustion environment, Technical Note 1402, The U.S. National Institute of Standards and Technology (NIST), 1993.10.6028/NIST.TN.1402Suche in Google Scholar

[25] D. K. Edwards and W. A. Menard, Correlations for absorption by methane and carbon dioxide gases, Applied Optics 3(7) (1964), 847–852.10.1364/AO.3.000847Suche in Google Scholar

[26] D. K. Edwards and A. Balakrishnan, Thermal radiation by combustion gases, Int. J. Heat and Mass Transfer 16 (1973), 25–40.10.1016/0017-9310(73)90248-2Suche in Google Scholar

[27] D. K. Edwards, Molecular gas band radiation, Adv. Heat Transfer 12 (1976), 115–193.10.1016/S0065-2717(08)70163-1Suche in Google Scholar

[28] A. T. Modak, Exponential wide band parameters for the pure rotational band of water vapor, J. Quant. Spectrosc. Radiat. Transfer 21 (1979), 131–142.10.1016/0022-4073(79)90024-4Suche in Google Scholar

[29] H. C. Hottel, J. J. Noble, A. F. Sarofim, G. D. Silcox, P. C. Wankat and K. S. Knaebel, in: D. W. Green and R. H. Perry (Eds.), Section 5: Heat and Mass Transfer, in Perry’s Chemical Engineers’ Handbook, Eighth Edition, McGraw-Hill, New York, 2007.Suche in Google Scholar

[30] R. Johansson, K. Andersson, B. Leckner and H. Thunman, Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers, Int. J. Heat Mass Transfer 53 (2010), 220–230.10.1016/j.ijheatmasstransfer.2009.09.039Suche in Google Scholar

[31] R. Johansson, B. Leckner, K. Andersson, F. Johansson, Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted- sum-of- grey-gases model, Combust. Flame 158(5) (2011), 893–901.10.1016/j.combustflame.2011.02.001Suche in Google Scholar

[32] G. Krishnamoorthy, M. Sami, S. Orsino, A. Perera, M. Shahnam, E. D. Huckaby, Radiation modelling in oxy-fuel combustion scenarios, Comput Int. J. Dyn Fluid. 24(3–4) (2010), 69–82.10.1080/10618562.2010.485567Suche in Google Scholar

[33] C. Yin, L. C. R. Johansen, L. A. Rosendahl and S. K. Kær, New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation, Energy & Fuels 24(12) (2010), 6275–6282.10.1021/ef101211pSuche in Google Scholar

[34] T. F. Smith, Z. F. Shen and J. N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat Transfer 104 (1982), 602–608.10.1115/1.3245174Suche in Google Scholar

[35] F. Liu, Numerical solutions of three-dimensional non-grey gas radiative transfer using the statistical narrow-band model, J. Heat Transfer 121 (1999), 200–203.10.1115/1.2825944Suche in Google Scholar

[36] P. J. Coelho, Numerical simulation of radiative heat transfer from non-gray gases in three-dimensional enclosures, Quant J. Spectrosc. Radiat. Transfer 74 (2002), 307–328.10.1016/S0022-4073(01)00249-7Suche in Google Scholar

[37] D. N. Trivic, Modeling of 3-D non-gray gases radiation by coupling the finite volume method with weighted sum of gray gases model, Int J Heat Mass Transfer 47 (2004), 1367–1382.10.1016/j.ijheatmasstransfer.2003.09.027Suche in Google Scholar

[38] G. Krishnamoorthy, A new weighted-sum-of-gray-gases model for CO2–H2O gas mixtures, Int. Commun. Heat Mass Transfer 37(9) (2010), 1182–1186.10.1016/j.icheatmasstransfer.2010.07.007Suche in Google Scholar

[39] R. Porter, F. Liu, M. Pourkashanian, A. Williams, D. Smith, Evaluation of solution methods for radiative heat transfer in gaseous oxy-fuel combustion environments, Quant J. Spectrosc. Radiat. Transfer 111 (2010), 2084–2094.10.1016/j.jqsrt.2010.04.028Suche in Google Scholar

[40] O. A. Marzouk and E. D. Huckaby, New weighted sum of gray gases (WSGG) models for radiation calculation in carbon capture simulations: evaluation and different implementation techniques, 7th National Combustion U.S. Meeting of the Institute Combustion, Atlanta, Georgia, March 20–23,paper OT08, 2011.Suche in Google Scholar

[41] V. A. Petrov, Combined radiative and conductive heat transfer in scattering semitransparent materials at high temperatures, Transf Heat. Res. 29(6–8) (1998), 529–534.10.1615/HeatTransRes.v29.i6-8.240Suche in Google Scholar

[42] A. V. Nenarokomov and D. M. Titov, Study of Radiative and Conductive Heat Transfer by the Inverse Problem Method, Heat Transf. Res. 37(3) (2006), 189–198.10.1615/HeatTransRes.v37.i3.10Suche in Google Scholar

[43] ANSYS FLUENT User’s Guide, Canonsburg, Pennsylvania, USA.Suche in Google Scholar

[44] H. Zeinivand and F. Bazdidi-Tehrani, Investigation of radiative heat transfer and three thermal radiation models in a turbulent non-premixed methane/air flame, Heat Transf. Res. 42(6) (2011), 571–593.10.1615/HeatTransRes.2012001924Suche in Google Scholar

[45] M. K. Denison and B. W Webb, An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer, J. Quant. Spectrosc. Radiat. Transfer 50(5) (1993), 499–510.10.1016/0022-4073(93)90043-HSuche in Google Scholar

[46] L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun and J. Tennyson, HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer 111(15) (2010), 2139–2150.10.1016/j.jqsrt.2010.05.001Suche in Google Scholar

[47] R. G. Mortimer, Chemistry Physical, Third Edition, Press Academic, 2008.Suche in Google Scholar

Received: 2017-5-10
Accepted: 2018-1-2
Published Online: 2018-3-7
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0106/html
Button zum nach oben scrollen