Home Microcontroller Control/Synchronization of the Dynamics of Van der Pol Oscillators Submitted to Disturbances
Article
Licensed
Unlicensed Requires Authentication

Microcontroller Control/Synchronization of the Dynamics of Van der Pol Oscillators Submitted to Disturbances

  • R. Thepi Siewe , U. Simo Domguia and P. Woafo EMAIL logo
Published/Copyright: November 22, 2017

Abstract

In this article, we present a microcontroller implementation of the synchronization of two Van der Pol oscillators submitted to disturbances of the pulse-like type. Three coupling schemes are used: the classical linear proportional coupling, a power order coupling and an adaptive coupling. After obtaining the coupling coefficients for synchronization through numerical simulation, the microcontroller implementation is carried out using simulation based on Euler algorithm. Agreement is found between both simulation strategies.

PACS: 05.45.Xt

References

[1] X. Han, J. A. Lü and X. Wu, Adaptive feedback synchronization of Lü system, Chaos Solit. Fract. 22(1) (2004), 221–227.10.1016/j.chaos.2003.12.103Search in Google Scholar

[2] E. W. Chimi Kontchou, H. B. Fotsin and P. Woafo, Feedback control and adaptive synchronization of chaotic forced Bonhoeffer–Van der Pol oscillators, Phys. Scr. 77 (2008), 045–001.10.1088/0031-8949/77/04/045001Search in Google Scholar

[3] P. R. Nwagoum Tuwa and P. Woafo, Analysis of an electrostatically actuated micro-plate subject to proportional-derivative controllers, J. Vib. Control. 1–10 (2016). doi:10.1177/1077546316674609Search in Google Scholar

[4] L. M. Pecora and T. L. Carroll, Synchronization in Chaotic systems, Phys. Rev. Lett. 64(8) (1990), 821–824.10.1103/PhysRevLett.64.821Search in Google Scholar PubMed

[5] T. L. Carroll and L. M. Pecora, Synchronizing chaotic circuits, IEEE Trans. Circuits Syst. 38(4) (1991), 453–456.10.1109/31.75404Search in Google Scholar

[6] T. Kapitaniak, Synchronization of chaos using continuous control, Phys. Rev. E 50(2) (1994), 1642–1644.10.1103/PhysRevE.50.1642Search in Google Scholar PubMed

[7] P. Woafo and R. A. Kraenkel, Synchronization: Stability and duration time, Phys. Rev. E 65 (2002), 036–225.10.1103/PhysRevE.65.036225Search in Google Scholar PubMed

[8] A. Chudzik, P. Perlikowski, A. Stefanski and T. Kapitaniak, Multistability and rare attractors in Van der Pol-duffing oscillator, Int. J. Bifurcat. Chaos. 21 (2011), 1907–1912.10.1142/S0218127411029513Search in Google Scholar

[9] J. Sawicki, M. Abel and E. Schöll, Synchronization in coupled organ pipes, Cyber Phys. 4 (2015), 112–115.Search in Google Scholar

[10] B. Nana and P. Woafo, Synchronization of diffusively coupled oscillators: Theory and experiment, AJEEE 3(2) (2015), 37–43.Search in Google Scholar

[11] A. P. Fournaris and N. Sklavos, Secure embedded system hardware design – a flexible security and trust enhanced approach, Comput. Elect. Eng. 40 (2014), 121–133.10.1016/j.compeleceng.2013.11.011Search in Google Scholar

[12] A. A. Elbaset, A. Hamdi, M. Abd-El Sattar and M. Khaled, Impleme ntation of a modif ied perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcont-roller, IET Renew Power Gen 10 (2016),551–560.10.1049/iet-rpg.2015.0309Search in Google Scholar

[13] M. A. Murillo-Escobar, C. Cruz-Hernández, F. Abundiz-Pérez and R. M. López-Gutiérrez, Implementation of an improved chaotic encryption algorithm for real-time embedded systems by using a 32-bit microcontroller, Microprocess. Microsyst. 45 (2016), 297–309.10.1016/j.micpro.2016.06.004Search in Google Scholar

[14] S. Kaçar, Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system, Opti-Int. J. Light. Opt. (2016). doi:10.1016/j.ijleo.2016.07.044Search in Google Scholar

[15] J. Chandramohan, R. Nagarajan, K. Satheeshkumar, N. Ajithkumar, P. A. Gopinath and S. Ranjithkumar, Intelligent smart home automation and security system using Arduino and Wi-fi, Int. J. Eng. And Comp. Sci. 6 (2017), 20694–20698.Search in Google Scholar

[16] Y. Raghavender Rao, Automatic smart parking system using Internet of Things (IOT), Int. J. Eng. Tech. Sci. Res. 4 (2017), 2394–3386.10.21090/IJAERD.24384Search in Google Scholar

[17] R. Chiu, M. Mora-Gonzalez and D. Lopez-Mancilla, Implementation of a Chaotic oscillator into a simple microcontroller, Conf. Electron. Eng. Comput. Science, IERI Procedia. 4 (2013), 247–252.10.1016/j.ieri.2013.11.035Search in Google Scholar

[18] M. Z. De la Hoz, L. Acho and Y. Vidal, An experimental realization of a chaos-based secure communication using arduino microcontrollers, Scientif. World J. 10 (2015). doi:10.1155/2015/123080Search in Google Scholar PubMed PubMed Central

[19] H. Hamiche, S. Guermah, R. Saddaoui, K. Hannoun, M. Laghrouche and S. Djennoune, Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board, Nonlinear Dyn. 81 (2015), 1921–1932.10.1007/s11071-015-2116-zSearch in Google Scholar

[20] A. S. Andreatos and C. K. Volos, Secure text encryption based on hardware chaotic noise generator, 2nd International Conference on Cryptography and Its Applications in the Armed Forces (2014).Search in Google Scholar

[21] M. A. Murillo-Escobar, C. Cruz-Hernández, F. F. Abundiz-Pérez and R. M. López-Gutiérrez, A robust embedded biometric authentication system based on fingerprint and chaotic encryption, Expert Syst. Appl. 42 (2015), 8198–8211.10.1016/j.eswa.2015.06.035Search in Google Scholar

Received: 2017-1-27
Accepted: 2017-6-8
Published Online: 2017-11-22
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0025/html
Scroll to top button