Startseite An Efficient Method for the Numerical Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Efficient Method for the Numerical Solution of a Class of Nonlinear Fractional Fredholm Integro-Differential Equations

  • M. H. Heydari , H. Laeli Dastjerdi EMAIL logo und M. Nili Ahmadabadi
Veröffentlicht/Copyright: 14. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce a mesh-free method, i.e., MLS collocation method for the numerical solution of a kind of nonlinear fractional Fredholm integro-differential equation. An error bound is provided for the proposed method which supports its convergence. Detailed numerical experiments approve its excellency in attaining the desired accuracy for a quite low computational cost. We have also compared linear basis with quadratic basis in terms of CPU time.

MSC 2010: 45G10

References

[1] Abu Arqub O., El-Ajou A., Momani S., Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations, J. Comput. Phys. 293 (2015), 385–399.10.1016/j.jcp.2014.09.034Suche in Google Scholar

[2] El-Ajou A., Abu Arqub O., Momani S., Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys. 293 (2015), 81–95.10.1016/j.jcp.2014.08.004Suche in Google Scholar

[3] Podlubny I., Equations Fractional Differential. Academic Press, San Diego, 1999.Suche in Google Scholar

[4] Diethelm K., Ford N. J., Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229–248.10.1006/jmaa.2000.7194Suche in Google Scholar

[5] Mittal R. C., Nigam R., Solution of fractional calculus and fractional integro-differential equations by Adomian decomposition method, Int. J. Appl. Math. Mech. 4 (2008), 87–94.Suche in Google Scholar

[6] Arikoglu A., Ozkol I., Solution of fractional integro-differential equations by using fractional differential transfom method, Chaos, Solitons Fractals 40 (2009), 521–529.10.1016/j.chaos.2007.08.001Suche in Google Scholar

[7] Rawashdeh E. A., Numerical solution of fractional integro-differential equations by collocation method, Appl. Math. Comput. 176 (2006), 1–6.10.1016/j.amc.2005.09.059Suche in Google Scholar

[8] Diethelm K., An algorithm for the numerical solution of differential equations of fractional order, Elec. Transact. Numer. Anal. 5 (1997), 1–6.Suche in Google Scholar

[9] Abu Arqub O., Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method. Heat & Fluid Flow (2017), doi:10.1108/HFF-07-2016-0278.Suche in Google Scholar

[10] Abu Arqub O., Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Comput. Math. Appl. 73 (2017), 1243–1261.10.1016/j.camwa.2016.11.032Suche in Google Scholar

[11] Turkyilmazoglu M., Solution of initial and boundary value problems by an effective accurate method, Int. J. Comput. Methods 14 (2) (2017), 1750069.10.1142/S0219876217500694Suche in Google Scholar

[12] Turkyilmazoglu M., High-order nonlinear Volterra–Fredholm–Hammerstein integro-differential equations and their effective computation, Appl. Math. Comput. 247 (2014), 410–6.10.1016/j.amc.2014.08.074Suche in Google Scholar

[13] Turkyilmazoglu M., An effective approach for numerical solutions of high-order fredholm integro-differential equations, Appl. Math. Comput. 227 (2014), 384–98.10.1016/j.amc.2013.10.079Suche in Google Scholar

[14] Mirzaei D., Dehghan M., A meshless based method for solution of integral equations, Appl. Numer. Math. 60 (2010), 245–262.10.1016/j.apnum.2009.12.003Suche in Google Scholar

[15] Laeli Dastjerdi H., Maalek Ghaini F. M., Numerical solution of Volterra–Fredholm integral equations by moving least square method and Chebyshev polynomials, Appl. Math. Model. 36 (2012), 3283–3288.10.1016/j.apm.2011.10.005Suche in Google Scholar

[16] Laeli Dastjerdi H., Maalek Ghaini F. M., The discrete collocation method for Fredholm-Hammerstein integral equations based on moving least squares method, Int. J. Comput. Math. 93 (8) (2016), 1347–1357.10.1080/00207160.2015.1046846Suche in Google Scholar

[17] Assari P., Adibi H., Dehghan M., A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algor. 67 (2014), 423– 455.10.1007/s11075-013-9800-1Suche in Google Scholar

[18] Shepard D., A two-dimensional interpolation function for irregularly-spaced data, in: Proceedings of the 1968 23rd ACM national conference, pp. 517–524, ACM.10.1145/800186.810616Suche in Google Scholar

[19] McLain D. H., Two dimensional interpolation from random data, Comput. J. 19 (2) (1976), 178–181.10.1093/comjnl/19.2.178Suche in Google Scholar

[20] McLain D. H., Drawing contours from arbitrary data points, Comput. J. 17 (4) (1974), 318–324.10.1093/comjnl/17.4.318Suche in Google Scholar

[21] Franke R. and Nielson G., Smooth interpolation of large sets of scattered data, Internat. J. Numer. Methods Engrg. 15 (11) (1980), 1691–1704.10.1002/nme.1620151110Suche in Google Scholar

[22] Lancaster P. and Salkauskas K., Surfaces generated by moving least squares methods, Math. Comp. 37 (155) (1981), 141–158.10.1090/S0025-5718-1981-0616367-1Suche in Google Scholar

[23] Belytschko T., Lu Y. Y. and Gu L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg. 37 (2) (1994), 229–256.10.1002/nme.1620370205Suche in Google Scholar

[24] Fries T.-P. and Matthies H.-G., Classification and overview of meshfree methods, Department of Mathematics and Computer Science, Technical University of Braunschweig,2003.Suche in Google Scholar

[25] Babuška I., Banerjee U., Osborn J. E. and Zhang Q., Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Engrg. 198 (2009), 2886–2897.10.1016/j.cma.2009.04.008Suche in Google Scholar

[26] Zuppa C., Error estimates for moving least square approximations, Bull. Braz. Math. Soc. 34 (2) (2003), 231–249.10.1007/s00574-003-0010-7Suche in Google Scholar

Received: 2017-4-27
Accepted: 2017-12-30
Published Online: 2018-3-14
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0097/html
Button zum nach oben scrollen