Opto-electronic properties of hydrothermally grown rod-like TiO2 nanostructures: potential electron transport layer for photovoltaic devices
Abstract
This study reports the deposition of compact TiO2 (c-TiO2) thin films, which serve as seed layers for the growth of TiO2 nanostructures. Five samples, labeled S1, S2, S3, S4, and S5, were prepared with 2, 4, 6, 8, and 10 deposition cycles of c-TiO2 thin films, respectively. Using the hydrothermal method, rod-like TiO2 nanostructures were successfully grown on these thin films. Field emission scanning electron microscopy images confirmed the formation of rod-like nanostructures with an average length of approximately 0.7 μm, and the number density of the nanorods increased with the seed layer thickness. X-ray diffraction analysis revealed the presence of both anatase and rutile phases of TiO2, with the majority of peaks corresponding to the anatase phase. The UV–Vis transmittance ranged from 60–90 % in the 400–700 nm wavelength range for all five films. The optical band gaps for samples S1, S2, S3, S4, and S5 were 3.11, 3.10, 3.07, 3.05, and 3.05 eV, respectively. Based on the overall characterizations, sample S2 demonstrated the best properties. This study indicates that the TiO2 nanorod layer on the c-TiO2 seed layer effectively enhances the electron transport performance of perovskite-based photovoltaic devices.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Vivek Dhuliya: Data curation, Writing-Original draft preparation, Visualization, Investigation, Software. Vaibhav Kandwal: Characterization, Conceptualization, Investigation. L. P. Purohit: Conceptualization, Methodology, Visualization, Writing-Reviewing and Editing, Supervision.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: V. Dhuliya and L. P. Purohit thank the Uttarakhand State Council for Science and Technology (UCOST), Dehradun, Government of Uttarakhand, for financial support through an R&D Research Project (Project no: UCS&T/R&D-09/21–22/20364/1).
-
Data availability: The data that support the findings of this study are available from the corresponding author, [L.P.P.], upon reasonable request.
References
1. Wu, H.; Yang, D.; Zhu, X.; Gu, P.; Sun, H.; Wangyang, P.; Li, J.; He, X.; Fan, L. Effect of nitrogen-oxygen Ratio on the Position of N Atoms in TiO2 Lattice of N-doped TiO2 Thin Films Prepared by DC Magnetron Sputtering. CrystEngComm 2018, 20, 4133–4140. https://doi.org/10.1039/C8CE00773J.Suche in Google Scholar
2. Atli, A.; Atilgan, A.; Yildiz, A. Multi-Layered TiO2 Photoanodes from Different Precursors of Nanocrystals for dye-sensitized Solar Cells. Sol. Energy 2018, 173, 752–758. https://doi.org/10.1016/j.solener.2018.08.027.Suche in Google Scholar
3. Sadoughi, G.; Starr, D. E.; Handick, E.; Stranks, S. D.; Gorgoi, M.; Wilks, R. G.; Bär, M.; Snaith, H. J. Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films. ACS Appl. Mater. Interfaces 2015, 7, 13440–13444. https://doi.org/10.1021/acsami.5b02237.Suche in Google Scholar PubMed
4. Raga, S. R.; Jung, M. C.; Lee, M. V.; Leyden, M. R.; Kato, Y.; Qi, Y. Influence of Air Annealing on High-Efficiency Planar Structure Perovskite Solar Cells. Chem. Mater. 2015, 27, 1597–1603. https://doi.org/10.1021/cm5041997.Suche in Google Scholar
5. O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. https://doi.org/10.1038/353737a0.Suche in Google Scholar
6. Choudhury, B. D.; Lin, C.; Ali, S.; Shawon, Z.; Martinez, J. S.; Huq, H.; Uddin, M. J. A Photoanode with Hierarchical Nanoforest TiO2 Structure and Silver Plasmonic Nanoparticles for Flexible dye-sensitized Solar Cell. 2021, 1–11. https://doi.org/10.1038/s41598-021-87123-z.Suche in Google Scholar PubMed PubMed Central
7. Manikandan, V. S.; Kumar, S.; Palai, A. K.; Mohanty, S.; Nayak, S. K. Ternary Composite Based on NiCo2O4/rGO/PANI as an Efficient Pt-free Tri-iodide Reducing Agent for dye-sensitized Solar Cell Application. J. Photochem. Photobiol. A Chem. 2019, 382, 111939. https://doi.org/10.1016/j.jphotochem.2019.111939.Suche in Google Scholar
8. Lu, Y. M.; Jiang, J.; Becker, M.; Kramm, B.; Chen, L.; Polity, A.; He, Y. B.; Klar, P. J.; Meyer, B. K. Polycrystalline SnO2 Films Grown by Chemical Vapor Deposition on Quartz Glass. Vacuum 2015, 122, 347–352. https://doi.org/10.1016/j.vacuum.2015.03.018.Suche in Google Scholar
9. Sharma, A.; Karn, R. K.; Pandiyan, S. K. Synthesis of TiO2 Nanoparticles by Sol-Gel Method and their Characterization. J. Basic Appl. Eng. Res. 2014, 1 (9), 1–5. https://doi.org/10.4028/p-S8p1Qh.Suche in Google Scholar
10. Khorasani, A.; Marandi, M.; Iraji Zad, A.; Taghavinia, N. Electron Transport Engineering with Different Types of Titanium Dioxide Nanostructures in Perovskite Solar Cells. J. Alloys Compd. 2023, 936, 168055. https://doi.org/10.1016/j.jallcom.2022.168055.Suche in Google Scholar
11. Nguyen, M. H.; Yoon, S. H.; Kim, K. S. Surface Modification of Electron Transport Layers Based on TiO2 Nanorods Boosts the Efficiency of Perovskite Solar Cells. AIChE J. 2023, 69 (2), e17958. https://doi.org/10.1002/aic.17958.Suche in Google Scholar
12. Acchutharaman, K. R.; Santhosh, N.; Pandian, M. S.; Ramasamy, P. Improved Optoelectronic Properties of Rutile TiO2 Nanorods Through Strontium Doping for Efficient Perovskite Solar Cells. Mater. Res. Bull. 2023, 160, 112141. https://doi.org/10.1016/j.materresbull.2022.112141.Suche in Google Scholar
13. Ding, Y.; Ding, B.; Kanda, H.; Usiobo, O. J.; Gallet, T.; Yang, Z.; Liu, Y.; Huang, H.; Sheng, J.; Liu, C.; Yang, Y.; Queloz, V. I. E.; Zhang, X.; Audinot, J. N.; Redinger, A.; Dang, W.; Mosconic, E.; Luo, W.; De Angelis, F.; Wang, M.; Dörflinger, P.; Armer, M.; Schmid, V.; Wang, R.; Brooks, K. G.; Wu, J.; Dyakonov, V.; Yang, G.; Dai, S.; Dyson, P. J.; Nazeeruddin, M. K. Single-Crystalline TiO2 Nanoparticles for Stable and Efficient Perovskite Modules. Nat. Nanotechnol. 2022, 17, 598–605. https://doi.org/10.1038/s41565-022-01108-1.Suche in Google Scholar PubMed
14. Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A.; Brown, T. M.; Jose, R. Vertical TiO2 Nanorods as a Medium for Stable and high-efficiency Perovskite Solar Modules. ACS Nano 2015, 9, 8420–8429. https://doi.org/10.1021/acsnano.5b03265.Suche in Google Scholar PubMed
15. Salado, M.; Oliva-Ramirez, M.; Kazim, S.; González-Elipe, A. R.; Ahmad, S. 1D TiO2 nano-forests as Photoanodes for Efficient and Stable Perovskite Solar Cells. Nano Energy 2017, 35, 215–222. https://doi.org/10.1016/j.nanoen.2017.03.034.Suche in Google Scholar
16. Xu, C.; Xie, Y.; Ma, Y.; Wang, X.; Wang, X.; Xu, H.; Qian, Y. Preparation and Characterization of Ultrafine ZnO Nanoparticles. Mater. Res. Bull. 2001, 36, 811–816. https://doi.org/10.1016/S0025-5408(01)00533-7.Suche in Google Scholar
17. Zhang, H.; Chen, G.; Bahnemann, D. W. Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem. 2009, 19, 5089–5121. https://doi.org/10.1039/B821991E.Suche in Google Scholar
18. Singhal, R.; Gangwar, R. K.; Khare, N.; Chandra, R. Enhanced Performance of DSSC Using ZnO–TiO2 Nanocomposite Photoanode. Appl. Phys. Lett. 2011, 98, 023305. https://doi.org/10.1063/1.3543628.Suche in Google Scholar
19. Murali, K. R.; Karthikeyan, B. Investigation on the Role of CuO as Interfacial Layer in TiO2/CuO Heterojunction Solar Cells. Optik 2015, 126, 1766–1769. https://doi.org/10.1016/j.ijleo.2015.04.058.Suche in Google Scholar
20. Aroutiounian, V.; Arakelyan, V.; Shahnazaryan, G.; Petrosyan, G. Solar Cells Based on Nanostructured CuO. Renew. Energy 2011, 36, 1121–1125. https://doi.org/10.1016/j.renene.2010.07.011.Suche in Google Scholar
21. Mane, R. S.; Lokhande, C. D. Chemical Deposition Method for Metal Chalcogenide Thin Films. Mater. Chem. Phys. 2000, 65, 1–31. https://doi.org/10.1016/S0254-0584(00)00230-9.Suche in Google Scholar
22. Zhang, Y.; Gu, Y.; Guo, W.; Shao, J.; Xu, J.; Mu, J. Synthesis and Characterization of ZnO/TiO2 core/shell Nanorod Arrays by a Simple Two-Step Hydrothermal Method. J. Alloys Compd. 2011, 509, 6635–6640. https://doi.org/10.1016/j.jallcom.2011.03.118.Suche in Google Scholar
23. Pathan, H. M.; Lokhande, C. D. Deposition of Metal Chalcogenide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method. Bull. Mater. Sci. 2004, 27, 85–111. https://doi.org/10.1007/BF02708420.Suche in Google Scholar
24. Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater. 2002, 14, 3808–3816. https://doi.org/10.1021/cm020027w.Suche in Google Scholar
25. González-Elipe, A. R.; Salado, M.; Ahmad, S. Advances in Photoanode Materials for Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 1262–1270. https://doi.org/10.1039/C6TA09684K.Suche in Google Scholar
26. Weng, B.; Song, J.; Peng, W.; Tang, Y.; Zhang, L.; Zeng, H. Low-Temperature Fabrication of TiO2 Compact Layers by Spray Pyrolysis for Perovskite Solar Cells. Mater. Lett. 2017, 190, 123–126. https://doi.org/10.1016/j.matlet.2016.12.029.Suche in Google Scholar
27. Mohammadnezhad, M.; Nouri, H.; Zargar, A.; Safari, M.; Koohsorkhi, J. ZnO Nanorod Arrays Grown on Glass via a Chemical Bath Deposition Method for Use in Perovskite Solar Cells. Ceram. Int. 2022, 48, 24611–24617. https://doi.org/10.1016/j.ceramint.2022.05.022.Suche in Google Scholar
28. Kim, H. S.; Im, S. H.; Park, N. G. Organolead Halide Perovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C 2014, 118, 5615–5625. https://doi.org/10.1021/jp501631z.Suche in Google Scholar
29. Chatterjee, S.; Nandy, S.; Pal, A. J. ZnO as a Charge Carrier Layer in Solar Cells: Recent Advances and Perspectives. J. Mater. Chem. A 2016, 4, 10493–10510. https://doi.org/10.1039/C6TA03924K.Suche in Google Scholar
30. Babu, V. J.; Kumar, M. R.; Nair, A. S.; Ramakrishna, S. Conducting Polymer-based Electrospun Nanofibers for Supercapacitor and Battery Applications. J. Mater. Chem. 2011, 21, 21173–21196. https://doi.org/10.1039/C1JM13033A.Suche in Google Scholar
31. Yun, J. S.; Kim, J.; Young, T.; Kim, J.; Seidel, J.; Green, M. A.; Huang, S.; Ho-Baillie, A.; Ho‐Baillie, A. Interface Engineering for High-Performance Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1600330. https://doi.org/10.1002/aenm.201600330.Suche in Google Scholar
32. Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; De Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; Lu, Z.; Yang, Z.; Hoogland, S.; Sargent, E. H.; Sargent, E. H. Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science 2017, 355, 722–726. https://doi.org/10.1126/science.aai9081.Suche in Google Scholar PubMed
33. Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yang, W. S.; Seo, J.; Seok, S. I.; Ho‐Baillie, A.; Huang, S.; Green, M. A.; Seidel, J.; Ahn, T. K. Beneficial Effects of PbI2 Incorporated in Organic–Inorganic Perovskite Solar Cells. Adv. Energy Mater. 2016, 6, 1502104. https://doi.org/10.1002/aenm.201502104.Suche in Google Scholar
34. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J. P.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206–209. https://doi.org/10.1126/science.aah5557.Suche in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effect of quenching rate on the phase formation and magnetic properties of Co35Fe10Ni30Ti20Al5 high entropy alloy
- Structural, dielectric and ferroelectric characteristics of (Bi0.9Gd0.1)(Ni0.5Ti0.5)O3 ceramic
- Variations in physicochemical characteristics of bacterial cellulose produced by Acetobacter aceti MTCC 2623 under static culture conditions
- Impact of La substitution on the thermoelectric properties of polycrystalline (Bi, Pb)-2223 below room temperature
- Structural and optical characterizations of zinc oxide nanostructures synthesized at low temperatures via sol–gel technique
- The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials
- Impact of gadolinium and manganese co-doping on the structural, dielectric and electrical characteristics of BST
- Gamma radiation grafted linear low density polyethylene based proton exchange membrane for fuel cell applications
- Design of N-(benzothiazol-2-yl)benzamide-Pd complexes with amine and diphosphine co-ligands to enhance hydrogen storage: increasing structural diversity while maintaining uniqueness
- Opto-electronic properties of hydrothermally grown rod-like TiO2 nanostructures: potential electron transport layer for photovoltaic devices
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effect of quenching rate on the phase formation and magnetic properties of Co35Fe10Ni30Ti20Al5 high entropy alloy
- Structural, dielectric and ferroelectric characteristics of (Bi0.9Gd0.1)(Ni0.5Ti0.5)O3 ceramic
- Variations in physicochemical characteristics of bacterial cellulose produced by Acetobacter aceti MTCC 2623 under static culture conditions
- Impact of La substitution on the thermoelectric properties of polycrystalline (Bi, Pb)-2223 below room temperature
- Structural and optical characterizations of zinc oxide nanostructures synthesized at low temperatures via sol–gel technique
- The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials
- Impact of gadolinium and manganese co-doping on the structural, dielectric and electrical characteristics of BST
- Gamma radiation grafted linear low density polyethylene based proton exchange membrane for fuel cell applications
- Design of N-(benzothiazol-2-yl)benzamide-Pd complexes with amine and diphosphine co-ligands to enhance hydrogen storage: increasing structural diversity while maintaining uniqueness
- Opto-electronic properties of hydrothermally grown rod-like TiO2 nanostructures: potential electron transport layer for photovoltaic devices
- News
- DGM – Deutsche Gesellschaft für Materialkunde