Home Design of N-(benzothiazol-2-yl)benzamide-Pd complexes with amine and diphosphine co-ligands to enhance hydrogen storage: increasing structural diversity while maintaining uniqueness
Article
Licensed
Unlicensed Requires Authentication

Design of N-(benzothiazol-2-yl)benzamide-Pd complexes with amine and diphosphine co-ligands to enhance hydrogen storage: increasing structural diversity while maintaining uniqueness

  • Faisal A. Salman , Amal I. Hamed , Ahmed A. Irzoqi and Mustafa A. Alheety EMAIL logo
Published/Copyright: May 23, 2025
Become an author with De Gruyter Brill

Abstract

This study entails the synthesis and characterization of palladium complexes containing N-(benzothiazol-2-yl)benzamide (LH) along with various hybrid ligands, including 2-aminopyridine (2amp), 4-aminopyridine (4amp), phenanthroline (Phen), triphenylphosphine (PPh3), as well as diphosphines such as dppp and dppb. Characterization of the prepared complexes was performed using molar conductivity analyses, FTIR, 31P-NMR, 1H-NMR, and 13C-NMR spectra. The proposed geometry around the metal ion is mostly planar, with the LH bond acting as a bidentate bond via the N atom of the pentameric ring in the benzothiazole and the O atom of the carbonyl group. The hydrogen storage capacities of selected complexes were evaluated under high pressure using the VTI/HPVA method. The results indicate that all complexes studied exhibit hydrogen storage capacity, with the highest storage values observed in [Pd(LH)(4amp)2]Cl2, [Pd(LH)(dppb)]Cl2, and [Pd(LH)(PPh3)Cl]Cl complexes reach 471, 212, 166 mL g−1, respectively.


Corresponding author: Mustafa A. Alheety, Department of Nursing, Al-Hadi University, Baghdad, Iraq, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: Data will be available on request.

References

1. Mandal, P.; Pratihar, J. L. Chemistry of 2, 2′-(diamino) Azobenzene Ligand: A Brief Review. Rev. Inorg. Chem. 2024, 44 (1), 73–89. ‏https://doi.org/10.1515/revic-2023-0002.10.1515/revic-2023-0002Search in Google Scholar

2. Alheety, N. F.; Raouafi, N.; Al-Isawi, A. A.; Alheety, M. A.; Besbes, R. Hydrogen Storage Studies of Nanocomposites Derived from O-Ethyl-S-((5-Methoxy-1H-Benzo [d] Imidazol-2-Yl) Carbonothioate (OESMBIC) with ZnO and TiO2 Nanoparticles. Energy Storage 2024, 6 (6), e70039. https://doi.org/10.1002/est2.70039.Search in Google Scholar

3. Al-Jibori, S. A.; Irzoqi, A. A.; Al-Saraj, E. G. H.; Al-Janabi, A. S. M.; Basak-Modi, S.; Ghosh, S.; Merzweiler, K.; Wagner, C.; Schmidt, H.; Hogarth, G. Formation of Ortho-Cyano-Aminothiophenolate Ligands with Versatile Binding Modes via Facile Carbon-Sulfur Bond Cleavage of 2-aminobenzothiazoles at Mercury(II) Centres. Dalton Trans. 2015, 44 (32), 14217–14219; https://doi.org/10.1039/c5dt02080h.Search in Google Scholar PubMed

4. Al-Jibori, S. A.; Al-Jibori, Q. K. A.; Schmidt, H.; Merzweiler, K.; Wagner, C.; Hogarth, G. Palladium(II) Saccharinate (Sac) and Thiosaccharinate (Tsac) Complexes with 2-Aminopyridine (2-ampy), 2-Acetylaminopyridine (2-aampy) and 2-Acetylaminopyrimidine (2-aampym) Co-ligands: X-Ray Crystal Structures of Trans-[Pd(sac)2(ampy)2] and Solvatomorphs Trans-[Pd(sac)2(2-aampy)2]·S (S=CHCl3, Thf). Inorganica Chim. Acta. 2013, 402, 69–74; https://doi.org/10.1016/j.ica.2013.03.036.Search in Google Scholar

5. Neelakantan, M. A.; Esakkiammal, M.; Mariappan, S. S.; Dharmaraja, J.; Jeyakumar, T. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes. Indian J. Pharm. Sci. 2010, 72 (2), 216–222; https://doi.org/10.4103/0250-474X.65015.Search in Google Scholar PubMed PubMed Central

6. Kurzajewska, M.; Kwiatek, D.; Kubicki, M.; Brzezinski, B.; Hnatejko, Z. New Complexes of 2-(4-Pyridyl)-1,3-Benzothiazole with Metal Ions; Synthesis, Structural and Spectral Studies. Polyhedron 2018, 148, 1–8; https://doi.org/10.1016/j.poly.2018.03.024.Search in Google Scholar

7. Yousif, E.; Farina, Y.; Kasar, K.; Graisa, A.; Ayid, K. Complexes of 2-Thioacetic Acid Benzothiazole with Some Metal Ions. Am. J. Appl. Sci. 2009, 6 (4), 582–585; https://doi.org/10.3844/ajassp.2009.582.585.Search in Google Scholar

8. Kok, S. H. L.; Gambari, R.; Chui, C. H.; Yuen, M. C. W.; Lin, E.; Wong, R. S. M.; Lau, F. Y.; Cheng, G. Y. M.; Lam, W. S.; Chan, S. H. Synthesis and Anticancer Activity of Benzothiazole Containing Phthalimide on Human Carcinoma Cell Lines. Bioorg. Med. Chem. 2008, 16 (7), 3626–3631; https://doi.org/10.1016/j.bmc.2008.02.005.Search in Google Scholar PubMed

9. Ugwu, D. I.; Okoro, U. C.; Ukoha, P. O.; Gupta, A.; Okafor, S. N. Novel Anti-inflammatory and Analgesic Agents: Synthesis, Molecular Docking and In Vivo Studies. J. Enzyme Inhib. Med. Chem. 2018, 33 (1), 405–415; https://doi.org/10.1080/14756366.2018.1426573.Search in Google Scholar PubMed PubMed Central

10. Mahran, M. A.; El-Nassry, S. M. F.; Allam, S. R.; El-Zawawy, L. A. Synthesis of Some New Benzothiazole Derivatives as Potential Antimicrobial and Antiparasitic Agents. Pharm. Int J. Pharm. Sci. 2003, 58 (8), 527–530; https://doi.org/10.1002/chin.200346139. https://www.ingentaconnect.com/content/govi/pharmaz/2003/00000058/00000008/art00001#.Search in Google Scholar PubMed

11. Asiri, Y. I.; Alsayari, A.; Muhsinah, A. B.; Mabkhot, Y. N.; Mohd, Z. H. Benzothiazoles as Potential Antiviral Agents. J. Pharm. Pharmacol. 2020, 72 (11), 1459–1480; https://doi.org/10.1111/jphp.13331.Search in Google Scholar PubMed PubMed Central

12. Torayama, H.; Nishide, T.; Asada, H.; Fujiwara, M.; Matsushita, T. Preparation and Characterization of Novel Cyclic Tetranuclear Manganese (III) Complexes: MnIII4(X-Salmphen)6 (X-SalmphenH2 = N,N′-di-Substituted-Salicylidene-1,3-Diaminobenzene (X = H, 5-Br). Polyhedron 1997, 16 (21), 3787–3794; https://doi.org/10.1016/S0277-5387(97)00148-4.Search in Google Scholar

13. Chaurasia, M. R.; Shukla, P.; Singh, N. K. Transition Metal Complexes of 6-Methyl-2-Amino Benzothiazole -Part III. Def. Sci. J. 1982, 32 (2), 75–79; https://doi.org/10.14429/dsj.32.6196.Search in Google Scholar

14. Cushnie, T. P.; Cushnie, B.; Echeverría, J.; Fowsantear, W.; Thammawat, S.; Dodgson, J. L.; Law, S.; Clow, S. M. Bioprospecting for Antibacterial Drugs: A Multidisciplinary Perspective on Natural Product Source Material, Bioassay Selection and Avoidable Pitfalls. Pharma. Res. 2020, 37 (7), 1–24. https://doi.org/10.1007/s11095-020-02849-1.Search in Google Scholar PubMed

15. Corbo, F.; Carocci, A.; Armenise, D.; De Laurentis, N.; Laghezza, A.; Loiodice, F.; Ancona, P.; Muraglia, M.; Pagliarulo, V.; Franchini, C.; Catalano, A. Antiproliferative Activity Evaluation of a Series of N-1,3-Benzothiazol-2-Ylbenzamides as Novel Apoptosis Inducers. J. Chem. 2016, 2016, e4267564; https://doi.org/10.1155/2016/4267564.Search in Google Scholar

16. Syamal, A. Magnetic Exchange in Transition Metal Complexes: S=1/2 Systems. Magn Exch Transit Met COMPLEXESS12 Syst. 1977. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7830215900.10.1007/BF01402729Search in Google Scholar

17. Figgis, B. N. Magnetic Properties of Spin-free Transition Series Complexes. Nature 1958, 182 (4649), 1568–1570; https://doi.org/10.1038/1821568a0.Search in Google Scholar

18. Liehr, A. D. Reciprocation of Electrostatic and Electromagnetic Forces in Ligand Field Theory. J. Phys. Chem. 1960, 64 (1), 43–51; https://doi.org/10.1021/j100830a011.Search in Google Scholar

19. Tcm, Y.; Manjuraj, T.; Jayanna, N. D. Spectral, DFT Studies, Molecular Docking and Antibacterial Activity of Schiff Base Derived from Furan-2-Carbaldehyde and Their Metal (II) Complexes. J. Turk. Chem. Soc. Sect. Chem. 2020, 6, 447–460; https://doi.org/10.18596/jotcsa.467859.Search in Google Scholar

20. Angulo-Cornejo, J.; Lino-Pacheco, M.; Richter, R.; Hennig, L.; Hallmeier, K.-H.; Beyer, L. Metal Chelates of N-Benzothiazol-2-Yl-N-Benzoxazol-2-Yl- and N-(1H-Benzimidazol-2-yl)-Benzamide. Inorganica Chim. Acta. 2000, 305 (1), 38–45; https://doi.org/10.1016/S0020-1693(00)00109-2.Search in Google Scholar

21. Rana, A.; Siddiqui, N.; Khan, S. A.; Ehtaishamul Haque, S.; Bhat, M. A. N-{[(6-Substituted-1,3-Benzothiazole-2-yl)amino]carbonothioyl}-2/4-Substituted Benzamides: Synthesis and Pharmacological Evaluation. Eur. J. Med. Chem. 2008, 43 (5), 1114–1122; https://doi.org/10.1016/j.ejmech.2007.07.008.Search in Google Scholar PubMed

22. Irzoqi, A.; Al-Janabi, A. S. M.; Jirjes, H. M. Synthesis and Characterization of Phthalimide-Benzothiazole Mercury(II) Complexes with Diphosphine and Diamines. Diyala J. Pure Sci. 2017, 13 (1-part 2), 1–11; https://doi.org/10.24237/djps.1301.141cnSearch in Google Scholar

23. Orhan, E.; Köse, M.; Alkan, D.; Öztürk, L. Synthesis and Characterization of Some New 4-Methyl-5-Imidazole Carbaldehyde Derivatives. J. Turk. Chem. Soc. Sect. Chem. 2019, 6 (3), 373–382; https://doi.org/10.18596/jotcsa.530757.Search in Google Scholar

24. Maidich, L.; Zuri, G.; Stoccoro, S.; Cinellu, M. A.; Zucca, A. Assembly of Symmetrical and Unsymmetrical Platinum(II) Rollover Complexes with Bidentate Phosphine Ligands. Dalton Trans. 2014, 43 (39), 14806–14815; https://doi.org/10.1039/C4DT02080D.Search in Google Scholar

25. Belkova, N. V.; Golub, I. E.; Gutsul, E. I.; Lyssenko, K. A.; Peregudov, A. S.; Makhaev, V. D.; Filippov, O.; Epstein, L.; Rossin, A.; Peruzzini, M.; Shubina, E. Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate. Crystals 2017, 7 (10), 318; https://doi.org/10.3390/cryst7100318.Search in Google Scholar

26. Irzoqi, A. A.; Salih, M. M.; Jirjes, H. M.; Mensoor, M. K. Synthesis, Characterization, and Antibacterial Activity of Complexes of Hg(II) with Mixtures of 3-Hydrazonoindolin-2-one and Diphosphine, or Diimine Ligands. Russ. J. Gen. Chem. 2020, 90 (6), 1069–1073. https://doi.org/10.1134/S1070363220060213.Search in Google Scholar

27. Bellú, S.; Hure, E.; Trapé, M.; Rizzotto, M.; Sutich, E.; Sigrist, M.; Moreno, V. The Interaction Between Mercury(II) and Sulfathiazole. Quím Nova 2003, 26 (2), 188–192; https://doi.org/10.1590/S0100-40422003000200008.Search in Google Scholar

28. Salih, B. D.; Alheety, M. A.; Mahmood, A. R.; Karadag, A.; Hashim, D. J. Hydrogen Storage Capacities of Some New Hg (II) Complexes Containing 2-Acetylethiophene. Inorg. Chem. Commun. 2019, 103, 100–106. ‏ https://doi.org/10.1016/j.inoche.2019.03.019.Search in Google Scholar

29. Al-Jibori, S. A.; Amen, M. M.; Alheety, M. A.; Karadag, A.; Wagner, C. Hydrogen Storage Capacity of Novel Mixed Ligand Complexes of Lead (II): Molecular Structure of [Pb2 (tsac) 4 (µ-dppe)]. Inorg. Chem. Commun. 2021, 125, 108444‏; https://doi.org/10.1016/j.inoche.2021.108444.Search in Google Scholar

30. Alheety, M. A.; Al-Jibori, S. A.; Karadağ, A.; Akbaş, H.; Uzun, O. Polymeric Silver (I) Benzisothiazolinone Complex: Synthesis, Characterization and H2 Gas Storage Capacity. In First International and the Third Scientific Conference, College of Science-University of Tikrit: Tikrit City, 2018; pp. 70–76.Search in Google Scholar

31. Reyhani, A.; Mortazavi, S. Z.; Mirershadi, S.; Moshfegh, A. Z.; Parvin, P.; Golikand, A. N. Hydrogen Storage in Decorated Multiwalled Carbon Nanotubes by Ca, Co, Fe, Ni, and Pd Nanoparticles under Ambient Conditions. J. Phys. Chem. C 2011, 115 (14), 6994–7001‏‏. https://doi.org/10.1021/jp108797p.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijmr-2024-0112).


Received: 2024-04-03
Accepted: 2024-12-25
Published Online: 2025-05-23

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0112/html
Scroll to top button