Abstract
As the technology of membrane-based fuel cells has advanced quickly, there has been a surge in demand for clean, sustainable energy applications worldwide. Raising the proton exchange membrane fuel cell (PEMFC) power density is one of the most important infrastructure and device-level issues that must be resolved before widespread commercialization can occur, and aggressive targets have been put forth internationally. Polymeric membranes have attained significant attention within the realm of energy generation and conversion systems. This is attributed not only to their favorable economic considerations but also to the ease of synthesis, rendering them particularly compelling for the research community. However, the effective design of membrane materials is imperative to their successful integration into respective systems. Grafting of monomers onto prepolymers has been an excellent surface modification methodology to create desired functionalities for polymers. Hydrocarbon polymers are not so well studied in the literature, especially LLDPE. The lifespan and performance of proton exchange membrane fuel cells are determined by two opposite characteristics of proton-conductive membranes which are challenging to achieve simultaneously. Herein, we developed a novel solid polymer electrolyte membrane through the combination of vinyl heterocyclic monomers and polyethylene as backbone. Because of the right combination, hydrophilic monomers; 1-vinylimidazole and 4-vinylpyridine and hydrophobic backbone-LLDPE the resulting composite membrane [LLDPE-g-P(1VIm/4VP)] showed fair basic qualities, in terms of ion exchange capacity and water uptake calculations. All synthesized membranes showed dehydration after 90 °C signifying the optimal range of membranes for electrochemical applications.
Acknowledgments
Authors would like to acknowledge the financial support from the International Atomic Energy Agency (IAEA), Vienna, Austria. We express our sincere gratitude to Dr. Ambuj Tripathi, Mr. Birendra Singh and Dr. Shaila Bahl of Inter-University Accelerator Centre, New Delhi, India Inter-University Accelerator Centre IUAC, New Delhi for offering support to use their facilities. Finally, authors are grateful to Dr. V. K. Jain and Dr. Abhishek Verma of Amity Institute of Renewable and Alternative Energy for providing SEM facility.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Bharath Govind: Designing the research approach, experiments, or data collection. Sunita Rattan: Drafting and editing the manuscript. Amira Zaouak: Analyzing the data using statistical or qualitative methods.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: All data shown in main text and supplementary information are available from the corresponding author upon request.
References
1. Arimura, T. H.; Sugino, M. Implications of Deglobalization on Energy and Carbon Neutrality in Asia and the Pacific Region. Asian Econ. Policy Rev. 2024, 19 (1), 105–124. https://doi.org/10.1111/aepr.12444.Search in Google Scholar
2. Yazdanie, M.; Frimpong, P. B.; Dramani, J. B.; Orehounig, K. The Impacts of the Informal Economy, Climate Migration, and Rising Temperatures on Energy System Planning. Energy Rep. 2024, 11, 165–178. https://doi.org/10.1016/j.egyr.2023.11.041.Search in Google Scholar
3. Guo, L.; Su, J.; Wang, Z.; Shi, J.; Guan, X.; Cao, W.; Ou, Z. Hydrogen Safety: An Obstacle that Must Be Overcome on the Road towards Future Hydrogen Economy. Int. J. Hydrogen Energy 2024, 51, 1055–1078. https://doi.org/10.1016/j.ijhydene.2023.08.248.Search in Google Scholar
4. Devanathan, R. Recent Developments in Proton Exchange Membranes for Fuel Cells. Energy Environ. Sci. 2008, 1 (1), 101. https://doi.org/10.1039/b808149m.Search in Google Scholar
5. Zhou, L.; Li, S.; Jain, A.; Sun, G.; Chen, G.; Guo, D.; Kang, J.; Zhao, Y. Optimization of Thermal Non-Uniformity Challenges in Liquid-Cooled Lithium-Ion Battery Packs Using NSGA-II. J. Electrochem. Energy Convers. Storage 2025, 22 (4), 041002. https://doi.org/10.1115/1.4066725.Search in Google Scholar
6. Wang, C.; Chen, Y. Unsupervised Dynamic Prognostics for Abnormal Degradation of Lithium-Ion Battery. Appl. Energy 2024, 365, 123280. https://doi.org/10.1016/j.apenergy.2024.123280.Search in Google Scholar
7. Cheng, T.; Liu, Q.; Jiang, G.; Yang, B.; Wang, X.; Wang, P. Numerical Study of Proton Exchange Membrane Fuel Cells with Airfoil Cross Flow Field. J. Power Sources 2025, 631, 236232. https://doi.org/10.1016/j.jpowsour.2025.236232.Search in Google Scholar
8. Zhao, H.; Zhao, G.; Liu, F.; Xiang, T.; Zhou, J.; Li, L. Realizing Dendrite-Free Lithium Deposition with Three-Dimensional Soft-Rigid Nanofiber Interlayers. J. Colloid Interface Sci. 2024, 666, 131–140. https://doi.org/10.1016/j.jcis.2024.04.029.Search in Google Scholar PubMed
9. Yi, X.; Lu, T.; Li, Y.; Ai, Q.; Hao, R. Collaborative Planning of Multi-Energy Systems Integrating Complete Hydrogen Energy Chain. Renewable Sustainable Energy Rev. 2025, 210, 115147. https://doi.org/10.1016/j.rser.2024.115147.Search in Google Scholar
10. Zhao, C.; Song, Y.; Chen, H.; Chen, H.; Li, Y.; Lei, A.; Wu, Q.; Zhu, L. Improving the Performance of Microbial Fuel Cell Stacks via Capacitive-Hydrogel Bioanodes. Int. J. Hydrogen Energy 2025, 97, 708–717. https://doi.org/10.1016/j.ijhydene.2024.11.424.Search in Google Scholar
11. Fu, L.; Wang, J.; Fu, X.; Zhao, G. Finite-Time Pade-Based Adaptive FNN Controller Implementation for Microbial Fuel Cell with Delay and Multi-Disturbance. Int. J. Hydrogen Energy 2025, 98, 1034–1043. https://doi.org/10.1016/j.ijhydene.2024.10.372.Search in Google Scholar
12. Liu, C.-Y.; Sung, C.-C. A Review of the Performance and Analysis of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies. J. Power Sources 2012, 220, 348–353. https://doi.org/10.1016/j.jpowsour.2012.07.090.Search in Google Scholar
13. Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Review of the Proton Exchange Membranes for Fuel Cell Applications. Int. J. Hydrogen Energy 2010, 35 (17), 9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017.Search in Google Scholar
14. Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; Huo, S.; Brandon, N. P.; Yin, Y.; Guiver, M. D. Designing the Next Generation of Proton-Exchange Membrane Fuel Cells. Nature 2021, 595 (7867), 361–369. https://doi.org/10.1038/s41586-021-03482-7.Search in Google Scholar PubMed
15. Wang, F.; Zhang, P.; Wang, G.; Nia, A. S.; Yu, M.; Feng, X. Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. Small Sci. 2022, 2 (2), 2100080. https://doi.org/10.1002/smsc.202100080.Search in Google Scholar PubMed PubMed Central
16. Wang, J.; Wang, J.; Kong, Z.; Lv, K.; Teng, C.; Zhu, Y. Conducting‐Polymer‐Based Materials for Electrochemical Energy Conversion and Storage. Adv. Mater. 2017, 29 (45), 1703044. https://doi.org/10.1002/adma.201703044.Search in Google Scholar PubMed
17. Hallinan, D. T.; Balsara, N. P. Polymer Electrolytes. Annu. Rev. Mater. Res. 2013, 43 (1), 503–525. https://doi.org/10.1146/annurev-matsci-071312-121705.Search in Google Scholar
18. Andreev, Y. G.; Bruce, P. G. Polymer Electrolyte Structure and its Implications. Electrochim. Acta 2000, 45 (8–9), 1417–1423. https://doi.org/10.1016/S0013-4686(99)00353-9.Search in Google Scholar
19. Shao, Y.; Yin, G.; Wang, Z.; Gao, Y. Proton Exchange Membrane Fuel Cell from Low Temperature to High Temperature: Material Challenges. J. Power Sources 2007, 167 (2), 235–242. https://doi.org/10.1016/j.jpowsour.2007.02.065.Search in Google Scholar
20. Tellez-Cruz, M. M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13 (18), 3064. https://doi.org/10.3390/polym13183064.Search in Google Scholar PubMed PubMed Central
21. Haider, R.; Wen, Y.; Ma, Z.-F.; Wilkinson, D. P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High Temperature Proton Exchange Membrane Fuel Cells: Progress in Advanced Materials and Key Technologies. Chem. Soc. Rev. 2021, 50 (2), 1138–1187. https://doi.org/10.1039/D0CS00296H.Search in Google Scholar
22. Mauritz, K. A.; Moore, R. B. State of Understanding of Nafion. Chem. Rev. 2004, 104 (10), 4535–4586. https://doi.org/10.1021/cr0207123.Search in Google Scholar PubMed
23. Rollet, A.-L.; Diat, O.; Gebel, G. A New Insight into Nafion Structure. J. Phys. Chem. B 2002, 106 (12), 3033–3036. https://doi.org/10.1021/jp020245t.Search in Google Scholar
24. Gandhimathi, S.; Krishnan, H.; Paradesi, D. Development of Proton-Exchange Polymer Nanocomposite Membranes for Fuel Cell Applications. Polym. Polym. Compos. 2020, 28 (7), 492–501. https://doi.org/10.1177/0967391119888319.Search in Google Scholar
25. Chen, X.; Lü, H.; Lin, Q.; Zhang, X.; Chen, D.; Zheng, Y. Partially Fluorinated Poly(Arylene Ether)s Bearing Long Alkyl Sulfonate Side Chains for Stable and Highly Conductive Proton Exchange Membranes. J. Membr. Sci. 2018, 549, 12–22. https://doi.org/10.1016/j.memsci.2017.11.066.Search in Google Scholar
26. Esmaeili, N.; Gray, E. M. A.; Webb, C. J. Non‐Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications–A Review. ChemPhysChem 2019, 20 (16), 2016–2053. https://doi.org/10.1002/cphc.201900191.Search in Google Scholar PubMed
27. Damay, F. Transport Properties of NafionTM Composite Membranes for Proton-Exchange Membranes Fuel Cells. Solid State Ionics 2003, 162–163, 261–267. https://doi.org/10.1016/S0167-2738(03)00238-8.Search in Google Scholar
28. Dhanapal, D.; Xiao, M.; Wang, S.; Meng, Y. A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. Nanomaterials 2019, 9 (5), 668. https://doi.org/10.3390/nano9050668.Search in Google Scholar PubMed PubMed Central
29. Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells. Prog. Polym. Sci. 2009, 34 (5), 449–477. https://doi.org/10.1016/j.progpolymsci.2008.12.003.Search in Google Scholar
30. Sithambaranathan, P.; Nasef, M. M.; Ahmad, A.; Abbasi, A.; Ting, T. M. Composite Proton-Conducting Membrane with Enhanced Phosphoric Acid Doping of Basic Films Radiochemically Grafted with Binary Vinyl Heterocyclic Monomer Mixtures. Membranes 2023, 13 (1), 105. https://doi.org/10.3390/membranes13010105.Search in Google Scholar PubMed PubMed Central
31. Abouzari-Lotf, E.; Etesami, M.; Nasef, M. M. Carbon-Based Nanocomposite Proton Exchange Membranes for Fuel Cells. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Elsevier: Amsterdam, 2018; pp. 437–461.10.1016/B978-0-12-813574-7.00018-6Search in Google Scholar
32. Rao, Z.; Tang, B.; Wu, P. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9 (27), 22597–22603. https://doi.org/10.1021/acsami.7b05969.Search in Google Scholar PubMed
33. Goñi-Urtiaga, A.; Presvytes, D.; Scott, K. Solid Acids as Electrolyte Materials for Proton Exchange Membrane (PEM) Electrolysis: Review. Int. J. Hydrogen Energy 2012, 37 (4), 3358–3372. https://doi.org/10.1016/j.ijhydene.2011.09.152.Search in Google Scholar
34. Martinez, M.; Molmeret, Y.; Cointeaux, L.; Iojoiu, C.; Leprêtre, J.-C.; El Kissi, N.; Judeinstein, P.; Sanchez, J.-Y. Proton-Conducting Ionic Liquid-Based Proton Exchange Membrane Fuel Cell Membranes: The Key Role of Ionomer–Ionic Liquid Interaction. J. Power Sources 2010, 195 (18), 5829–5839. https://doi.org/10.1016/j.jpowsour.2010.01.036.Search in Google Scholar
35. Stannett, V. T. Radiation Grafting — State-of-the-Art. Int. J. Radiat. Appl. Instrum., Part C 1990, 35 (1–3), 82–87. https://doi.org/10.1016/1359-0197(90)90062-M.Search in Google Scholar
36. Alkan Gürsel, S.; Gubler, L.; Gupta, B.; Scherer, G. G. Radiation Grafted Membranes. In Fuel Cells I; Scherer, G. G., Ed.; Springer: Berlin, Heidelberg, 2008; pp. 157–217.10.1007/12_2008_153Search in Google Scholar
37. Zheng, Y.; Zheng, J.; Wang, X.; Lu, Y. Gamma Radiation Effects on High-Temperature Superconducting ReBCO Tape. Supercond. Sci. Technol. 2024, 37 (4), 045013. https://doi.org/10.1088/1361-6668/ad2fda.Search in Google Scholar
38. Dargaville, T. R.; George, G. A.; Hill, D. J. T.; Whittaker, A. K. High Energy Radiation Grafting of Fluoropolymers. Prog. Polym. Sci. 2003, 28 (9), 1355–1376. https://doi.org/10.1016/S0079-6700(03)00047-9.Search in Google Scholar
39. Gubler, L.; Nauser, T.; Coms, F. D.; Lai, Y.-H.; Gittleman, C. S. Perspective—Prospects for Durable Hydrocarbon-Based Fuel Cell Membranes. J. Electrochem. Soc. 2018, 165 (6), F3100–F3103. https://doi.org/10.1149/2.0131806jes.Search in Google Scholar
40. Holmes, T.; Skalski, T. J. G.; Adamski, M.; Holdcroft, S. Stability of Hydrocarbon Fuel Cell Membranes: Reaction of Hydroxyl Radicals with Sulfonated Phenylated Polyphenylenes. Chem. Mater. 2019, 31 (4), 1441–1449. https://doi.org/10.1021/acs.chemmater.8b05302.Search in Google Scholar
41. Kim, H. K.; Zhang, M.; Yuan, X.; Lvov, S. N.; Chung, T. C. M. Synthesis of Polyethylene-Based Proton Exchange Membranes Containing PE Backbone and Sulfonated Poly(Arylene Ether Sulfone) Side Chains for Fuel Cell Applications. Macromolecules 2012, 45 (5), 2460–2470. https://doi.org/10.1021/ma202492d.Search in Google Scholar
42. Sherazi, T. A.; Guiver, M. D.; Kingston, D.; Ahmad, S.; Kashmiri, M. A.; Xue, X. Radiation-Grafted Membranes Based on Polyethylene for Direct Methanol Fuel Cells. J. Power Sources 2010, 195 (1), 21–29. https://doi.org/10.1016/j.jpowsour.2009.07.021.Search in Google Scholar
43. Gubler, L.; Slaski, M.; Wokaun, A.; Scherer, G. G. Advanced Monomer Combinations for Radiation Grafted Fuel Cell Membranes. Electrochem. Commun. 2006, 8 (8), 1215–1219. https://doi.org/10.1016/j.elecom.2006.05.029.Search in Google Scholar
44. Chuy, C.; Basura, V. I.; Simon, E.; Holdcroft, S.; Horsfall, J.; Lovell, K. V. Electrochemical Characterization of Ethylenetetrafluoroethylene-g-Polystyrenesulfonic Acid Solid Polymer Electrolytes. J. Electrochem. Soc. 2000, 147 (12), 4453. https://doi.org/10.1149/1.1394085.Search in Google Scholar
45. Li, J.; Li, X.; Yu, S.; Hao, J.; Lu, W.; Shao, Z.; Yi, B. Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Preparation and Application in High-Temperature Proton-Exchange-Membrane Fuel Cells. Energy Convers. Manage. 2014, 85, 323–327. https://doi.org/10.1016/j.enconman.2014.05.052.Search in Google Scholar
46. Si, Z.; Gu, F.; Guo, J.; Yan, F. Phosphoric Acid‐Doped Imidazolium Ionomers with Enhanced Stability for Anhydrous Proton‐Exchange Membrane Applications. J. Polym. Sci., Part B:Polym. Phys. 2013, 51 (17), 1311–1317. https://doi.org/10.1002/polb.23334.Search in Google Scholar
47. Rath, S. K.; Palai, A.; Rao, S.; Chandrasekhar, L.; Patri, M. Effect of Solvents in Radiation‐Induced Grafting of 4‐Vinyl Pyridine onto Fluorinated Ethylene Propylene Copolymer. J. Appl. Polym. Sci. 2008, 108 (6), 4065–4071. https://doi.org/10.1002/app.28022.Search in Google Scholar
48. Anbarasan, R.; Jayaseharan, J.; Sudha, M.; Gopalan, A. Free‐Radical Grafting of 4‐Vinyl Pyridine onto Nylon 6 Fiber. J. Appl. Polym. Sci. 2002, 86 (12), 3108–3113. https://doi.org/10.1002/app.11240.Search in Google Scholar
49. Sabaa, M. W.; Mohamed, N. A.; Mohamed, R. R.; Abd El Latif, S. M. Chemically Induced Graft Copolymerization of 4-Vinyl Pyridine onto Carboxymethyl Chitosan. Polym. Bull. 2011, 67 (4), 693–707. https://doi.org/10.1007/s00289-011-0461-8.Search in Google Scholar
50. Hormozi Jangi, S. R. Developing a Label-Free Full-Range Highly Selective pH Nanobiosensor Using a Novel High Quantum Yield pH-Responsive Activated-Protein-Protected Gold Nanocluster Prepared by a Novel Ultrasonication-Protein-Assisted Procedure. Spectrochim. Acta, Part A 2024, 322, 124829. https://doi.org/10.1016/j.saa.2024.124829.Search in Google Scholar PubMed
51. Hormozi, J. S. R. Developing a Novel Ultraselective and Ultrasensitive Label-free Direct Spectrofluorimetric Nanobiosensor for Direct Highly Fast Field Detection of Explosive Triacetone Triperoxide. Anal. Chim. Acta 2024, 1320, 343016. https://doi.org/10.1016/j.aca.2024.343016.Search in Google Scholar PubMed
52. Dehghani, Z.; Akhond, M.; Hormozi Jangi, S. R.; Absalan, G. Highly Sensitive Enantioselective Spectrofluorimetric Determination of R-/S-Mandelic Acid Using l-Tryptophan-Modified Amino-Functional Silica-Coated N-Doped Carbon Dots as Novel High-Throughput Chiral Nanoprobes. Talanta 2024, 266, 124977. https://doi.org/10.1016/j.talanta.2023.124977.Search in Google Scholar PubMed
53. Sabaa, M. W.; Mohamed, N. A.; Mohamed, R. R.; Khalil, N. M.; Abd El Latif, S. M. Synthesis, Characterization and Antimicrobial Activity of Poly (N-Vinyl Imidazole) Grafted Carboxymethyl Chitosan. Carbohydr. Polym. 2010, 79 (4), 998–1005. https://doi.org/10.1016/j.carbpol.2009.10.024.Search in Google Scholar
54. Mostafa, T. B. Chemical Modification of Polypropylene Fibers Grafted Vinyl Imidazole/Acrylonitrile Copolymer Prepared by Gamma Radiation and its Possible Use for the Removal of Some Heavy Metal Ions. J. Appl. Polym. Sci. 2009, 111 (1), 11–18. https://doi.org/10.1002/app.26850.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston