Startseite Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination

  • Ayşegül Şenocak ORCID logo EMAIL logo , Rızvan İmamoğlu ORCID logo und Sefa Yılmaz ORCID logo
Veröffentlicht/Copyright: 15. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a nickel complex with the general formula [Ni(HST)(OAc)] (HST: 1-salicylaldehydethiosemicarbazone, OAc: acetate) was subjected to thermal decomposition to produce nanoparticles at three different temperatures. The semiconductor nanoparticles have a particle size of 22.18 nm and a band gap of 2.68 eV. Furthermore, it was observed that the nanoparticles exhibiting a zeta-potential value of −26.1 are stable in colloidal media. The produced nanoparticles have the potential to be used as wastewater treatment agents under optimized conditions, as evidenced by the photocatalytic activity on methylene blue degradation with a 69.30% decomposition. Although all the synthesized compounds exhibit high antibacterial activity with low minimal inhibitory concentration values, the nanoparticles obtained by calcination at 400 °C had the highest activity, which is consistent with the literature.


Corresponding author: Ayşegül Şenocak, Department of Chemistry, Collage of Art and Science, Tokat Gaziosmanpaşa University, 60240, Tokat, Türkiye, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brodowska, K., Łodyga-Chruścińska, E. Chemik 2014, 68, 129. https://doi.org/10.34256/ioriip1982.Suche in Google Scholar

2. Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B., De Fátima, Â. J. Adv. Res. 2011, 2, 1. https://doi.org/10.1016/j.jare.2010.05.004.Suche in Google Scholar

3. Abu-Dief, A. M., Mohamed, I. M. A. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119. https://doi.org/10.1016/j.bjbas.2015.05.004.Suche in Google Scholar PubMed PubMed Central

4. Mansour, A. M. RSC Adv. 2015, 5, 62052. https://doi.org/10.1039/c5ra12157d.Suche in Google Scholar

5. Ismail, B. A., Nassar, D. A., Abd El–Wahab, Z. H., Ali, O. A. M. J. Mol. Struct. 2021, 1227, 129393. https://doi.org/10.1016/j.molstruc.2020.129393.Suche in Google Scholar

6. Ebrahimipour, S. Y., Sheikhshoaie, I., Castro, J., Haase, W., Mohamadi, M., Foro, S., Sheikhshoaie, M., Esmaeili-Mahani, S. Inorg. Chim. Acta. 2015, 430, 245. https://doi.org/10.1016/j.ica.2015.03.016.Suche in Google Scholar

7. Aazam, E. S., El-Said, W. A. Bioorg. Chem. 2014, 57, 5. https://doi.org/10.1016/j.bioorg.2014.07.004.Suche in Google Scholar PubMed

8. Galini, M., Salehi, M., Kubicki, M., Bayat, M., Malekshah, R. E. J. Mol. Struct. 2020, 1207, 127715. https://doi.org/10.1016/j.molstruc.2020.127715.Suche in Google Scholar

9. Shahraki, S., Heydari, A. Colloids Surf. B Biointerfaces 2017, 160, 564. https://doi.org/10.1016/j.colsurfb.2017.10.026.Suche in Google Scholar PubMed

10. Khalaji, A. D., Grivani, G., Izadi, S. J. Therm. Anal. Calorim. 2016, 126, 1105. https://doi.org/10.1007/s10973-016-5698-x.Suche in Google Scholar

11. Grivani, G., Vakili, M., Khalaji, A. D., Bruno, G., Rudbari, H. A., Taghavi, M., Tahmasebi, V. J. Mol. Struct. 2014, 1072, 77. https://doi.org/10.1016/j.molstruc.2014.04.059.Suche in Google Scholar

12. Khansari, A., Enhessari, M., Salavati-Niasari, M. J. Cluster Sci. 2013, 24, 289. https://doi.org/10.1007/s10876-012-0521-8.Suche in Google Scholar

13. Dehno Khalaji, A. J. Cluster Sci. 2013, 24, 189. https://doi.org/10.1007/s10876-012-0542-3.Suche in Google Scholar

14. Shahsavani, E., Feizi, N., Khalaji, A. D. J. Ultrafine Grained Nanostruct. Mater. 2016, 49, 48. https://doi.org/10.7508/jufgnsm.2016.01.08.Suche in Google Scholar

15. Khalaji, A. D., Nikookar, M., Fejfarova, K., Dusek, M. J. Mol. Struct. 2014, 1071, 6. https://doi.org/10.1016/j.molstruc.2014.04.043.10.1016/j.molstruc.2014.04.043Suche in Google Scholar

16. Liu, M., Wang, X., Zhu, D., Li, L., Duan, H., Xu, Z., Wang, Z., Gan, L. Chem. Eng. J. 2017, 308, 240. https://doi.org/10.1016/j.cej.2016.09.061.Suche in Google Scholar

17. Li, N., Li, Y., Li, Q., Zhao, Y., Sen Liu, C., Pang, H. J. Colloid Interface Sci. 2021, 581, 709. https://doi.org/10.1016/j.jcis.2020.07.134.Suche in Google Scholar PubMed

18. Wang, M., Song, X., Dai, S., Xu, W., Yang, Q., Liu, J., Hu, C., Wei, D. Electrochim. Acta 2016, 214, 68. https://doi.org/10.1016/j.electacta.2016.08.036.Suche in Google Scholar

19. Thi, T. V., Rai, A. K., Gim, J., Kim, J. J. Power Sources 2015, 292, 23. https://doi.org/10.1016/j.jpowsour.2015.05.029.Suche in Google Scholar

20. Kumar Rai, A., Tuan Anh, L., Park, C. J., Kim, J. Ceram. Int. 2013, 39, 6611. https://doi.org/10.1016/j.ceramint.2013.01.097.Suche in Google Scholar

21. Silva, V. D., Simões, T. A., Grilo, J. P. F., Medeiros, E. S., Macedo, D. A. J. Mater. Sci. 2020, 55, 6648. https://doi.org/10.1007/s10853-020-04481-1.Suche in Google Scholar

22. Dan, W., Li, J., Tu, X., Jia, K. Adv. Mater. Res. 2013, 601, 21. https://doi.org/10.4028/www.scientific.net/amr.601.21.Suche in Google Scholar

23. He, J., Schill, L., Yang, S., Riisager, A. ACS Sustain. Chem. Eng. 2018, 6, 17220. https://doi.org/10.1021/acssuschemeng.8b04579.Suche in Google Scholar

24. Karthik, K., Shashank, M., Revathi, V., Tatarchuk, T. Mol. Cryst. Liq. Cryst. 2018, 673, 70. https://doi.org/10.1080/15421406.2019.1578495.Suche in Google Scholar

25. Gupta, V. K., Fakhri, A., Agarwal, S., Ahmadi, E., Nejad, P. A. J. Photochem. Photobiol. B Biol. 2017, 174, 235. https://doi.org/10.1016/j.jphotobiol.2017.08.006.Suche in Google Scholar PubMed

26. Ahmad Bhat, S., Zafar, F., Ullah Mirza, A., Hossain Mondal, A., Kareem, A., Haq, Q. M. R., Nishat, N. Arab. J. Chem. 2020, 13, 5724. https://doi.org/10.1016/j.arabjc.2020.04.011.Suche in Google Scholar

27. Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Ramalingam, R. J., Al-Lohedan, H. A. J. Photochem. Photobiol. B Biol. 2018, 180, 39. https://doi.org/10.1016/j.jphotobiol.2018.01.023.Suche in Google Scholar PubMed

28. Soltani, H., Pardakhty, A., Ahmadzadeh, S. J. Mol. Liq. 2016, 219, 63. https://doi.org/10.1016/j.molliq.2016.03.014.Suche in Google Scholar

29. Shabani-Nooshabadi, M., Roostaee, M., Tahernejad-Javazmi, F. J. Mol. Liq. 2020, 317, 114687. https://doi.org/10.1016/j.molliq.2020.114687.Suche in Google Scholar

30. Rezazadeh, Z., Soleimani, F., Mahmoudi, B., Nasseri, M. A., Kazemnejadi, M. Appl. Phys. A Mater. Sci. Process 2021, 127, 1. https://doi.org/10.1007/s00339-021-04927-6.Suche in Google Scholar

31. Khalaji, A. D. J. Ultrafine Grained Nanostruct. Mater. 2015, 48, 1.Suche in Google Scholar

32. Khalaji, A. D. Iran. J. Chem. Chem. Eng. 2016, 35, 17.Suche in Google Scholar

33. Khalaji, A. D., Das, D., Matalobos, J. S., Gharib, F. Int. J. Bio-Inorg. Hybrid Nanomater. 2015, 4, 59.Suche in Google Scholar

34. Samadi, S., Khalili, E., Allahgholi Ghasri, M. R. J. Electron. Mater. 2019, 48, 7836. https://doi.org/10.1007/s11664-019-07585-w.Suche in Google Scholar

35. Motahari, F., Mozdianfard, M. R., Salavati-Niasari, M. Process Saf. Environ. Protect. 2015, 93, 282. https://doi.org/10.1016/j.psep.2014.06.006.Suche in Google Scholar

36. Kitchamsetti, N., Ramteke, M. S., Rondiya, S. R., Mulani, S. R., Patil, M. S., Cross, R. W., Dzade, N. Y., Devan, R. S. J. Alloys Compd. 2021, 855, 157337. https://doi.org/10.1016/j.jallcom.2020.157337.Suche in Google Scholar

37. Nassar, M. Y., Aly, H. M., Abdelrahman, E. A., Moustafa, M. E. J. Mol. Struct. 2017, 1143, 462. https://doi.org/10.1016/j.molstruc.2017.04.118.Suche in Google Scholar

38. Alibrahim, K. A., Al-Fawzan, F. F., Refat, M. S. Rev. Roum. Chem. 2020, 65, 343. https://doi.org/10.33224/rrch.2020.65.4.03.Suche in Google Scholar

39. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., Darroudi, M. Polyhedron 2020, 178, 114351. https://doi.org/10.1016/j.poly.2020.114351.Suche in Google Scholar

40. Li, X., Peng, Y., Tian, T., Wang, D., Ren, X., Pu, X. J. Solid State Chem. 2021, 306, 122715. https://doi.org/10.1016/j.jssc.2021.122715.Suche in Google Scholar

41. Kuba, A. S. M., Al-Shamari, A. M. J. Mater. Today Proc. 2022, 49, 2741. https://doi.org/10.1016/j.matpr.2021.09.256.Suche in Google Scholar

42. Darbandi, M., Eynollahi, M., Badri, N., Mohajer, M. F., Li, Z. A. J. Alloys Compd. 2021, 889, 161706. https://doi.org/10.1016/j.jallcom.2021.161706.Suche in Google Scholar

43. El-Shazly, R. M., Al-Hazmi, G. A. A., Ghazy, S. E., El-Shahawi, M. S., El-Asmy, A. A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 243. https://doi.org/10.1016/j.saa.2004.02.035.Suche in Google Scholar PubMed

44. İmamoğlu, R., Koç, E., Kısa, D. Bioorg. Med. Chem. Lett. 2022, 65, 128722. https://doi.org/10.1016/j.bmcl.2022.128722.Suche in Google Scholar PubMed

45. Kaplan, Ö., Gökşen Tosun, N., İmamoğlu, R., Türkekul, İ., Gökçe, İ., Özgür, A. J. Drug Deliv. Sci. Technol. 2022, 69, 103178. https://doi.org/10.1016/j.jddst.2022.103178.Suche in Google Scholar

46. Korkmaz, N., Akar, K. B., İmamoğlu, R., Kısa, D., Karadağ, A. Appl. Organomet. Chem. 2021, 35, 1. https://doi.org/10.1002/aoc.6213.Suche in Google Scholar

47. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed.; John Wiley & Sons: New York, 1978.Suche in Google Scholar

48. El-Kemary, M., Nagy, N., El-Mehasseb, I. Mater. Sci. Semicond. Process. 2013, 16, 1747. https://doi.org/10.1016/j.mssp.2013.05.018.Suche in Google Scholar

49. Hong, S. J., Mun, H. J., Kim, B. J., Kim, Y. S. Micromachines 2021, 12, 1. https://doi.org/10.3390/mi12101168.Suche in Google Scholar PubMed PubMed Central

50. Kawasaki, S. I., Sue, K., Ookawara, R., Wakashima, Y., Suzuki, A., Hakuta, Y., Arai, K. J. Supercrit. Fluids 2010, 54, 96. https://doi.org/10.1016/j.supflu.2010.03.001.Suche in Google Scholar

51. Palanisamy, P., Raichur, A. M. Mater. Sci. Eng. C 2009, 29, 199. https://doi.org/10.1016/j.msec.2008.06.008.Suche in Google Scholar

52. Zorkipli, N. N. M., Kaus, N. H. M., Mohamad, A. A. Procedia Chem. 2016, 19, 626. https://doi.org/10.1016/j.proche.2016.03.062.Suche in Google Scholar

53. Davar, F., Fereshteh, Z., Salavati-Niasari, M. J. Alloys Compd. 2009, 476, 797. https://doi.org/10.1016/j.jallcom.2008.09.121.Suche in Google Scholar

54. Selvakumar, R., Nirosha, B., Vairam, S., Premkumar, T., Govindarajan, S. Inorg. Chim. Acta. 2018, 482, 774. https://doi.org/10.1016/j.ica.2018.07.021.Suche in Google Scholar

55. Chen, Z., Xu, A., Zhang, Y., Gu, N. Curr. Appl. Phys. 2010, 10, 967. https://doi.org/10.1016/j.cap.2009.11.083.Suche in Google Scholar

56. García, A. B., Cuesta, A., Montes-Morán, M. A., Martínez-Alonso, A., Tascón, J. M. D. J. Colloid Interface Sci. 1997, 192, 363. https://doi.org/10.1006/jcis.1997.5007.Suche in Google Scholar PubMed

57. Al-Zaqri, N., Umamakeshvari, K., Mohana, V., Muthuvel, A., Boshaala, A. J. Mater. Sci. Mater. Electron. 2022, 33, 11864–11880. https://doi.org/10.1007/s10854-022-08149-1.Suche in Google Scholar

58. Pham, T. M. H., Vu, M. T., Cong, T. D., Nguyen, N. S., Doan, T. A., Truong, T. T., Nguyen, T. H. Bull. Mater. Sci. 2022, 45, 13. https://doi.org/10.1007/s12034-021-02584-2.Suche in Google Scholar

59. Khairnar, S. D., Shrivastava, V. S. J. Taibah Univ. Sci. 2019, 13, 1108. https://doi.org/10.1080/16583655.2019.1686248.Suche in Google Scholar

60. Abdel-Rahman, L. H., Abu-Dief, A. M., El-Khatib, R. M., Abdel-Fatah, S. M. Bioorg. Chem. 2016, 69, 140. https://doi.org/10.1016/j.bioorg.2016.10.009.Suche in Google Scholar PubMed

61. Tohidiyan, Z., Sheikhshoaie, I., Khaleghi, M., Mague, J. T. J. Mol. Struct. 2017, 1134, 706. https://doi.org/10.1016/j.molstruc.2017.01.026.Suche in Google Scholar

62. Farhadi, S., Roostaei-Zaniyani, Z. Polyhedron 2011, 30, 1244. https://doi.org/10.1016/j.poly.2011.01.028.Suche in Google Scholar

63. Farhadi, S., Roostaei-Zaniyani, Z. Polyhedron 2011, 30, 971. https://doi.org/10.1016/j.poly.2010.12.044.Suche in Google Scholar

64. Salavati-Niasari, M., Mir, N., Davar, F. J. Alloys Compd. 2010, 493, 163. https://doi.org/10.1016/j.jallcom.2009.11.153.Suche in Google Scholar

65. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., Souto, E. B. Nanomaterials 2020, 10, 1. https://doi.org/10.3390/nano10020292.Suche in Google Scholar PubMed PubMed Central

66. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., Christen, P. Biomolecules 2014, 4, 252. https://doi.org/10.3390/biom4010252.Suche in Google Scholar PubMed PubMed Central

Received: 2022-06-02
Accepted: 2022-10-07
Published Online: 2023-02-15
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0260/html
Button zum nach oben scrollen