Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
-
Louiza Guerguer
, Ahmed Hamdi
, Aicha Ziouche , Djamel Benbertal , Mohammed Abdelkader Belalem und Abderrahim Benmoussat
Abstract
In this study, Ni–SiO2 nanocomposite coatings were deposited on the surface of X70 steel by performing direct current electrodeposition. The effect of different concentrations of cetyltrimethylammonium bromide surfactant (0.3, 0.5, 1, and 2 g L−1) on particle distribution and corrosion behaviour of the coatings was analysed. The structural properties of the obtained coatings were evaluated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis, X-ray diffraction, and atomic force microscopy. The corrosion behaviour of the coatings was tested by potentiodynamic polarisation and electrochemical impedance spectroscopy. The results showed that the electrodeposited coatings obtained from the electroplating bath with 1 g L−1 of surfactant modified the surface morphology of the Ni–SiO2 nanocomposite coating and presented a finer and more uniform microstructure. The results of the phase structure analysis showed that the addition of the surfactant in the electrodeposition process changed the preferred orientations for the coatings from (111) to (220) and (200) planes. The anti-corrosion performance of the resulting coating produced in the presence of 1 g L−1 of surfactant was significantly higher than the anti-corrosion performance of the other coatings and showed a lower corrosion rate.
Acknowledgements
The authors would like to thank the ALFAPIPE Company of Ghardaia-Algeria for providing the steel samples and their chemical composition. We would also like to thank the Dr. Mohamed Cherif M’Ziane for his assistance in (SEM/EDS Mapping) measurements, where the microstructural analysis was accomplished in the Laboratory of Energy Processes and Nanotechnology (LEPN) at the University of Blida1-Algeria.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Abdeen, D. H., El Hachach, M., Koc, M., Atieh, M. A. Materials 2019, 12, 210. https://doi.org/10.3390/ma12020210.Suche in Google Scholar PubMed PubMed Central
2. Ziouche, A., Haddad, A., Badji, R., Zergoug, M., Zoubiri, N., Beedjaoui, W., Abaidia, S. J. Mater. Eng. Perform. 2018, 27, 1249–1256. https://doi.org/10.1007/s11665-018-3222-0.Suche in Google Scholar
3. Ikmal, W. M., Kamaruzzaman, W. M., Fekeri, M. F. M., Shaifudin, M. S., Abdullah, W. R. W., Nik, W. M. S. W., Zulkifli, M. F. R., Ghazali, M. S. M. Coatings 2020, 10, 1–20. https://doi.org/10.3390/coatings10090825.Suche in Google Scholar
4. Heyer, A., Souza, F. D., Leon Morales, C. F., Ferrari, G., Mol, J. M. C., De Wit, J. H. W. Ocean. Eng. 2013, 70, 188–200. https://doi.org/10.1016/j.oceaneng.2013.05.005.Suche in Google Scholar
5. Raja, M., Bapu, G. N. K. R., Maharaja, J., Sekar, R. Surf. Eng. 2014, 30, 697–701. https://doi.org/10.1179/1743294414Y.0000000265.Suche in Google Scholar
6. Abidin, A. Z., Kozera, R., Höhn, M., Endler, I., Knaut, M., Boczkowska, A., Czulak, A., Malczyk, P., Sobczak, N., Michaelis, A. Thin Solid Films 2015, 589, 479–486. https://doi.org/10.1016/j.tsf.2015.06022.Suche in Google Scholar
7. Fotovvati, B., Namdari, N., Dehghanghadikolaei, A. J. Manuf. Mater. Process. 2019, 3, 1–22. https://doi.org/10.3390/jmmp3010028.Suche in Google Scholar
8. Baghery, P., Farzam, M., Mousvi, A. B., Hosseini, M. Surf. Coat. Technol. 2010, 204, 3804–3810. https://doi.org/10.1016/j.surfcoat.2010.04.061.Suche in Google Scholar
9. Yang, T. C., Chin, T. S., Chang, J. K., Lin, C. S. Surf. Coat. Technol. 2020, 404, 126–457. https://doi.org/10.1016/j.surfcoat.2020.126457.Suche in Google Scholar
10. Lekbir, C., Dahoun, N., Guetitech, A., Hacid, A., Ziouche, A., Ouaad, K., Djadoun, A. J. Mater. Eng. Perform. 2017, 26, 2502–2511. https://doi.org/10.1007/s11665-017-2696-5.Suche in Google Scholar
11. Sa-nguanmoo, R., Nisaratanaporn, E., Boonyongmaneerat, Y. Corros. Sci. 2011, 53, 122–126. https://doi.org/10.1016/j.corsci.2010.09.031.Suche in Google Scholar
12. Noori, S. M. Bull. Mater. Sci. 2019, 42, 1–7. https://doi.org/10.1007/s12034-019-1733-4.Suche in Google Scholar
13. Sabri, M., Sarabi, A. A., Kondelo, S. M. N. Mater. Chem. Phys. 2012, 136, 566–569. https://doi.org/10.1016/j.matchemphys.2012.07.027.Suche in Google Scholar
14. Beltowska-Lehman, E., Indyka, P., Bigos, A., Szczerba, M. J., Kot, M. J. Electroanal. Chem. 2016, 775, 27–36. https://doi.org/10.1016/j.jelechem.2016.05.003.Suche in Google Scholar
15. Goldasteh, H., Rastegari, S. Surf. Coat. Technol. 2014, 259, 393–400. https://doi.org/10.1016/j.surfcoat.2014.10.064.Suche in Google Scholar
16. Tuaweri, T. J., Wilcox, G. D. Surf. Coat. Technol. 2006, 200, 5921–5930. https://doi.org/10.1016/j.surfcoat.2005.09.023.Suche in Google Scholar
17. Walsh, F. C., De Leon, C. P. Trans. IMF 2014, 92, 83–98. https://doi.org/10.1179/0020296713Z.000000000161.Suche in Google Scholar
18. Parhizkar, N., Dolati, A., Aghababazadeh, R., Lalegani, Z. Bull. Mater. Sci. 2016, 39, 1021–1027. https://doi.org/10.1007/s12034-016-1238-3.Suche in Google Scholar
19. Low, C. T. J., Wills, R. G. A., Walsh, F. C. Surf. Coat. Technol. 2006, 201, 371–383. https://doi.org/10.1016/j.surfcoat.2005.11.123.Suche in Google Scholar
20. Narasimman, P., Pushpavanam, M., Periasamy, V. M. Appl. Surf. Sci. 2011, 258, 590–598. https://doi.org/10.1016/j.apsusc.2011.08.038.Suche in Google Scholar
21. kiliç, F., Gül, H., Aslan, S., Alp, A., Akbulut, H. Colloids Surf., A 2013, 419, 53–60. https://doi.org/10.1016/j.colsurfa.2012.11.048.Suche in Google Scholar
22. Yao, Y., Yao, S., Zhang, L., Wang, H. Mater. Lett. 2007, 61, 67–70. https://doi.org/10.1016/j.matlet.2006.04.007.Suche in Google Scholar
23. Szczygiel, B., kolodziej, M. Electrochim. Acta 2005, 50, 4188–4195. https://doi.org/10.1016/j.electacta.2005.01.040.Suche in Google Scholar
24. kumar, K. A., Mohan, P., Kalaignan, G. P., Muralidharan, V. S. J. Nanosci. Nanotechnol. 2012, 12, 8364–8371. https://doi.org/10.1166/jnn.2012.6691.Suche in Google Scholar PubMed
25. Zhang, Y., Yang, Y., Xiao, P., Zhang, X., Lu, L., Li, L. Mater. Lett. 2009, 63, 2429–2431. https://doi.org/10.1016/j.matlet.2009.08.019.Suche in Google Scholar
26. Khazrayie, M. A., Aghdam, A. R. S. Trans. Nonferrous Met. Soc. China 2010, 20, 1017–1023. https://doi.org/10.1016/S1003-6326(09)60251-X.Suche in Google Scholar
27. Li, B., Li, D., Chen, W., Liu, Y., Zhang, J., Wei, Y., Zhang, W. Ceram. Int. 2019, 45, 4870–4879. https://doi.org/10.1016/j.ceramint.2018.11.184.Suche in Google Scholar
28. Hosseini, M. G., Abdolmaleki, M., Ghahremani, J. Corros. Eng., Sci. Technol. 2014, 49, 247–254. https://doi.org/10.1179/1743278213Y.0000000120.Suche in Google Scholar
29. Bin-shi, X., Hai-dou, W., Shi-yun, D., Bin, J., Wei-yi, T. Electrochem. Commun. 2005, 7, 572–575. https://doi.org/10.1016/j.elecom.2005.03.014.Suche in Google Scholar
30. Socha, R. P., Nowak, P., Laajalehto, K., Väyrynen, J. Colloids Surf., A 2004, 235, 45–55. https://doi.org/10.1016/j.colsurfaces.2004.01.01110.1016/j.colsurfa.2004.01.011.Suche in Google Scholar
31. Tu, W., Xu, B., Dong, S., Wang, H. Mater. Lett. 2006, 60, 1247–1250. https://doi.org/10.1016/j.matlet.2005.11.008.Suche in Google Scholar
32. Nowak, P., Socha, R. P., Kaisheva, M., Fransaer, J., Celis, J., Stoinov, Z. J. Appl. Electrochem. 2000, 30, 429–437. https://doi.org/10.1023/A:1003979117146.10.1023/A:1003979117146Suche in Google Scholar
33. Li, R., Hou, Y., Liang, J. Appl. Surf. Sci. 2016, 367, 449–458. https://doi.org/10.1016/j.apsusc.2016.01.241.Suche in Google Scholar
34. Ger, M. Mater. Chem. Phys. 2004, 87, 67–74. https://doi.org/10.1016/j.matchemphys.2004.04.022.Suche in Google Scholar
35. Zanella, C., Lekka, M., Bonora, P. L. Surf. Eng. 2016, 26, 511–518. https://doi.org/10.1179/174329409X438961.Suche in Google Scholar
36. Hongmin, K., Zhaoyi, Y. Rare Met. Mater. Eng. 2015, 44, 2960–2964. https://doi.org/10.1016/S1875-5372(16)60030-9.Suche in Google Scholar
37. Terzieva, V., Fransaer, J., Celis, J. J. Electrochem. Soc. 2000, 147, 198–202. https://doi.org/10.1149/1.1393174.Suche in Google Scholar
38. Rudnik, E., Burzy, L., Dolasi, L., Misiak, M. Appl. Surf. Sci. 2010, 256, 7414–7420. https://doi.org/10.1016/j.apsusc.2010.05.082.Suche in Google Scholar
39. Javadian, S., Yousefi, A., Neshati, J. Appl. Surf. Sci. 2013, 285, 674–681. https://doi.org/10.1016/j.apsusc.2013.08.109.Suche in Google Scholar
40. Vittal, R., Gomathi, H., Kim, k. Adv. Colloid Interface Sci. 2006, 119, 55–68. https://doi.org/10.1016/j.cis.2005.09.00.Suche in Google Scholar
41. Rouhollahi, A., Fazlolahzadeh, O., Dolati, A., Ghahramanifard, F. J. Nanostruct. Chem. 2018, 8, 139–152. https://doi.org/10.1007/s40097-018-0259-4.Suche in Google Scholar
42. Li, Q., Fu, W., Mu, Y., Zhang, W., Lv, P., Zhou, L., Yang, H., Chi, K., Yang, L. CrystEngComm 2014, 16, 5227–5233. https://doi.org/10.1039/c3ce42589d.Suche in Google Scholar
43. Maestro, A., Guzman, E., Santini, E., Ravera, F., Liggieri, L., Ortega, F., Rubio, R. G. Soft Matter 2012, 8, 837–843. https://doi.org/10.1039/C1SM06421E.Suche in Google Scholar
44. Zamblau, I., Varvara, S., Muresan, L. M. J. Mater. Sci. 2011, 46, 6484–6490. https://doi.org/10.1007/s10853-011-5594-5.Suche in Google Scholar
45. Daugherty, R. E., Zumbach, M. M., Sanders, S. F., Golden, T. D. Surf. Coat. Technol. 2018, 349, 773–782. https://doi.org/10.1016/j.surfcoat.2018.05.026.Suche in Google Scholar
46. Ali, K., Narayana, S., Shakoor, R. A., Okonkwo, P. C., Yusuf, M. M., Alashraf, A., Kahraman, R. Scanning 2018, 3, 1–13. https://doi.org/10.1155/2018/7187024.Suche in Google Scholar PubMed PubMed Central
47. Hou, F., Wang, W., Guo, H. Appl. Surf. Sci. 2006, 252, 3812–3817. https://doi.org/10.1016/j.apsusc.2005.05.076.Suche in Google Scholar
48. Vaezi, M. R., Sadrnezhaad, S. k., Nikzad, L. Colloids Surf., A 2008, 315, 176–182. https://doi.org/10.1016/j.colsurfa.2007.07.027.Suche in Google Scholar
49. Kucharska, B., Sobiecki, J. R. Corros. Eng., Sci. Technol. 2020, 1–7, https://doi.org/10.1080/1478422X.2019.1710662.Suche in Google Scholar
50. Kasturibai, S., Kalaignan, G. P. Ionics 2013, 19, 763–770. https://doi.org/10.1007/s11581-012-0810-0.Suche in Google Scholar
51. Choi, S. G., Wang, S. J., Park, H. H., Jang, J. N., Hong, M. P., Kwon, K. H. Thin Solid Films 2010, 518, 7372–7376. https://doi.org/10.1016/j.tsf.2010.05.006.Suche in Google Scholar
52. Zarghami, V., Ghorbani, M. J. Alloys Compd. 2014, 598, 236–242. https://doi.org/10.1016/j.jallcom.2014.01.220.Suche in Google Scholar
53. Xiang, T., Zhang, M., Li, C., Dong, C., Yang, L., Chan, W. J. Alloys Compd. 2018, 736, 62–70. https://doi.org/10.1016/j.jallcom.2017.11.031.Suche in Google Scholar
54. Yasin, G., Arif, M., Nizam, M. N., Shakeel, M., Khan, M. A., Khan, W. Q., Hassan, T. M., Abbas, Z., Farahbakhsh, I., Zuo, Y. RSC Adv. 2018, 8, 20039–20047. https://doi.org/10.1039/C7RA13651J.Suche in Google Scholar
55. Özkan, S., Hapç, G., Orhan, G. Surf. Coat. Technol. 2013, 232, 734–741. https://doi.org/10.1016/j.surfcoat.2013.06.089.Suche in Google Scholar
56. Sadreddini, S., Ardakani, S. R., Rassaee, H. J. Mater. Eng. Perform. 2017, 26, 2032–2039. https://doi.org/10.1007/s11665-017-2632-8.Suche in Google Scholar
57. Yang, X., Li, Q., Zhang, S., Liu, F., Wang, S., Zhang, H. J. Alloys Compd. 2010, 495, 189–195. https://doi.org/10.1016/j.jallcom.2010.01.117.Suche in Google Scholar
58. Ahmadiyeh, S., Rasooli, A., Hosseini, M. G. Surf. Eng. 2018, 35, 1–12. https://doi.org/10.1080/02670844.2018.1498823.Suche in Google Scholar
59. Sliem, M. H., Shalzad, K., Sivaprasad, V. N. A., Shkoor, R., Abdullah, A. M., Fayyaz, O., Umer, M. A. Surf. Coat. Technol. 2020, 403, 126340. https://doi.org/10.1016/j.surfcoat.2020.126340.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde