Startseite Technik A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A solid-state approach for the low temperature synthesis of Cr3Si hollow particles

  • Liangbiao Wang EMAIL logo , Zhe Chen , Yongjie Xie , Yuting Xiong , Qinglin Cheng , Ziyan Wang , Hengyuan Zhang , Ziming Zhou , Kailong Zhang EMAIL logo und Tao Mei EMAIL logo
Veröffentlicht/Copyright: 20. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, pure cubic chromium silicide (Cr3Si) hollow particles have been successfully synthesized through the solid-state reaction of chromium sesquioxide, silicon powder and metallic lithium in an autoclave at 600 °C for 10 h. The as-prepared samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy, which showed that the as-prepared samples were cubic phase Cr3Si hollow particles. Furthermore, the oxidation resistance of the obtained Cr3Si sample was also investigated.


Dr. Liangbiao Wang School of Chemistry and Environment Engineering Jiangsu University of Technology No. 1801 Zhongwu Road Changzhou 213001 P. R. China
Dr. Kailong Zhang Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu School of Chemical Engineering Huaiyin Institute of Technology Huaian, China No. 1 Yuancheng Road Huai ’an 223003 P. R. China
Prof. Tao Mei School of Materials Science and Engineering Hubei University Wuhan China No. 368 Youyi Road Wuhan 430062 P. R. China

Funding statement: This work was supported by the National Natural Science Foundation of China (grant no. 52176185), the Changzhou Sci&Tech Program (grant no. CJ20200041) and the Open Project of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu (grant no. HPK202004).

References

[1] E. Mazzega, M. Michelini, F. Nava: J. Phys. F Met. Phys. 17 (1987) 1135• DOI:10.1088/0305-4608/17/5/01310.1088/0305-4608/17/5/013Suche in Google Scholar

[2] J.J. Lu, L.B. Wang, J.H. Zhang, Q.W. Li, W.Q. Liu, Z.S. Lou, A. Zheng, Q.F. Zhou: Micro&Nano Lett. 13 (2018) 341• DOI:10.1049/mnl.2017.067410.1049/mnl.2017.0674Suche in Google Scholar

[3] L.B. Wang, D.J. Zhao, J.J. Lu, W.Q. Liu, Q.F. Zhou: Int. J. Mater. Res. 109 (2018) 177• DOI:10.3139/146.11158810.3139/146.111588Suche in Google Scholar

[4] I. Nishida: J. Mater. Sci. 7 (1972) 1119• DOI:10.1007/BF0055019310.1007/BF00550193Suche in Google Scholar

[5] T. Tokushima, I. Nishida, K. Sakata, T. Sakata: J. Mater. Sci. 4 (1969) 978• DOI:10.1007/BF0055531310.1007/BF00555313Suche in Google Scholar

[6] C.L. Yeh, J.Z. Lin: Intermetallics 33 (2013) 126• DOI:10.1016/j.intermet.2012.10.00810.1016/j.intermet.2012.10.008Suche in Google Scholar

[7] D.L. Zhang: J. Mater. Sci. 31 (1996) 895• DOI:10.1007/BF0035288710.1007/BF00352887Suche in Google Scholar

[8] W. Lin, T.Y. Lin, C.W. Huang, Y.H. Ting, T.C. Tsai, C.Y. Huang, S.M. Yang, K.C. Lu, W.W. Wu: Mater. & Design 169 (2019) 107674• DOI:10.1016/j.matdes.2019.10767410.1016/j.matdes.2019.107674Suche in Google Scholar

[9] J.H. Ma, Y.L. Gu, L. Shi, L.Y. Chen, Z.H. Yang, Y.T. Qian, J. Alloys Compd., 376 (2004) 176• DOI:10.1016/j.jallcom.2003.12.01510.1016/j.jallcom.2003.12.015Suche in Google Scholar

[10] J.H. Ma, Y.L. Gu, L. Shi, L.Y. Chen, Z.H. Yang, Y.T. Qian, J. Alloys Compd., 375 (2004) 249• DOI:10.1016/j.jallcom.2003.11.03110.1016/j.jallcom.2003.11.031Suche in Google Scholar

[11] K. Seo, K.S.K. Varadwaj, D. Cha, J. In, Y. Kim, J. Park, B. Kim: J. Phys. Chem. C 111 (2007) 9072• DOI:10.1021/jp071707b10.1021/jp071707bSuche in Google Scholar

[12] L.B. Wang, Q.W. Li, T. Mei, L. Shi, Y.C. Zhu, Y.T. Qian: Mater. Chem. Phys. 137 (2012) 1• DOI:10.1016/j.matchemphys.2012.08.00810.1016/j.matchemphys.2012.08.008Suche in Google Scholar

[13] W.C. Dai, L.J. Lu., Y.X. Han, L.B. Wang, J.J. Wang, J.M. Hu, C.C. Ma, K.L. Zhang, T. Mei: ACS Omega. 4 (2019) 4896 –4900• PMid:31459673; DOI:10.1021/acsomega.8b0285610.1021/acsomega.8b02856Suche in Google Scholar PubMed PubMed Central

[14] L.B. Wang, F. Zhang, W.C. Dai, Q.L. Cheng, K.L. Zhang, Y. Wu, Y.T. Xiong, Y. Lu, Q. Wu, X.H. He: Chem. Lett. 48 (2019) 604• DOI:10.1246/cl.19007510.1246/cl.190075Suche in Google Scholar

[15] L.B. Wang, W.J. Xian, K.L. Zhang, W.Q. Liu, H.F. Qin, Q.F. Zhou, Y.T. Qian: Inorg .Chem. Front. 4 (2017) 2055• DOI:10.1039/c7qi00447 h10.1039/c7qi00447hSuche in Google Scholar

[16] L.B. Wang, K.B. Tang, Y.C. Zhu, Q.W. Li, B.C. Zhu, L.C. Wang, L.L. Si, Y.T. Qian: J. Mater. Chem. 22 (2012) 14559• DOI:10.1039/c2jm30844d10.1039/c2jm30844dSuche in Google Scholar

[17] L.B. Wang, Q.L. Cheng, H.F. Qin, Z.C. Li, Z.S. Lou, J.J. Lu, J.H. Zhang, Q.F. Zhou: Dalton Trans. 46 (2017) 2756• DOI:10.1039/c6dt04865j10.1039/c6dt04865jSuche in Google Scholar PubMed

[18] L.B. Wang, Q.W. Li, Y.C. Zhu, Y.T. Qian: Int. J. Refract. Met. Hard Mater. 31 (2012) 288• DOI:10.1016/j.ijrmhm.2011.10.00910.1016/j.ijrmhm.2011.10.009Suche in Google Scholar

[19] L.B. Wang, W.C. Dai, K.L. Zhang, T. Mei, H.Y. Zhuang, S.S. Song, S. Yang, Q.F. Zhou, Y.T. Qian: Inorg .Chem. Front. 5 (2018) 2893• DOI:10.1039/c8qi00856f10.1039/c8qi00856fSuche in Google Scholar

[20] Z.C. Ju, N. Fan, X.C. Ma, J. Li, X.J. Ma, L.Q. Xu, Y.T. Qian: J. Phys. Chem. C, 111 (2007) 16202• DOI:10.1021/jp074305c10.1021/jp074305cSuche in Google Scholar

Received: 2021-05-22
Accepted: 2021-07-23
Published Online: 2021-11-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8375/html
Button zum nach oben scrollen