Abstract
The composition design of complex concentrated alloys originates from the composition design of amorphous alloys. To expand the composition design of alloys, herein, the compositions of novel Ti–Co–Ni–Zr complex concentrated alloys were obtained by the proportional mixing of Ti2Co intermetallics and Ni64Zr36 binary eutectic. The theory and method of this new alloy design are also discussed. The as-cast Ti28Co14Ni37.12Zr20.88, Ti30Co15Ni35.2Zr19.8, and Ti32 . Co16Ni33.3Zr18.7 alloys were composed of body-centered cubic TiNi and Ti2Ni phases. The Ti28Co14Ni37.12Zr20.88 alloy exhibited high yield strength (2 164 MPa) and compressive strength (2 539 MPa) under quasi-static compression at roomtemperature. The high strength of Ti28Co14Ni37.12Zr20.88 alloy is related to the precipitation of Ti2Ni along the grain boundary and the precipitation in the crystal. This paper validates that using the proportional mixing method of intermetallics and eutectic alloy is an effective method to design complex concentrated alloys with high strength.
Funding statement: Authors acknowledge financial support from Natural Science Basic Research Program of Shaanxi Province (2020JQ-870), Zhejiang Postdoctoral Scientific Research Project (ZJ2019166), and Ningbo Natural Science Foundation (2019A610168).
References
[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang: Adv. Eng. Mater. 6 (2004) 299. DOI:10.1002/adem.20030056710.1002/adem.200300567Search in Google Scholar
[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent: Mater. Sci. Eng. A 375–377 (2004) 213. DOI:10.1016/j.msea.2003.10.25710.1016/j.msea.2003.10.257Search in Google Scholar
[3] J.W. Yeh, S.K. Chen, J.W. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang: Metall. Mater. Trans. A 35A (2004) 2533. DOI:10.1007/s11661-006-0234-410.1007/s11661-006-0234-4Search in Google Scholar
[4] D.B. Miracle, O.N. Senkov: Acta Mater. 122 (2017) 448. DOI:10.1016/j.actamat.2016.08.08110.1016/j.actamat.2016.08.081Search in Google Scholar
[5] M.H. Tsai, J.W. Yeh: Mater. Res. Lett. 2 (2014) 107. DOI:10.1080/21663831.2014.91269010.1080/21663831.2014.912690Search in Google Scholar
[6] Y. Zhang, T.T. Zuo, Y.Q. Cheng, Peter K. Liaw: Sci. Reports 3 (2013) 299. DOI:10.1038/srep0145510.1038/srep01455Search in Google Scholar PubMed PubMed Central
[7] H.F. Li, X.H. Xie, K. Zhao, Y.B. Wang, Y.F. Zheng, W.H. Wang, L. Qin: Acta Biomater. 9 (2013) 8561. DOI:10.1016/j.actbio.2012.09.02310.1016/j.actbio.2012.09.023Search in Google Scholar PubMed
[8] Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li: Sci. Reports. 4 (2014) 6200. DOI:10.1038/srep06200.10.1038/srep06200Search in Google Scholar PubMed PubMed Central
[9] P. Cui, Y.M. Ma, L.J. Zhang, M.D. Zhang, J.T. Fan, W.Q. Dong, P.F. Yu, R.P. Liu: Mater. Sci. Eng. A 737 (2018) 198. DOI:10.1016/j.msea.2018.09.05010.1016/j.msea.2018.09.050Search in Google Scholar
[10] X.P. Wang, F.T. Kong: J. Aeronautical Mater. 39 (2019) 1. DOI:10.11868/j.issn.1005-5053.2019.000170.10.11868/j.issn.1005-5053.2019.000170Search in Google Scholar
[11] F. He, Z.j. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, C.T. Liu: J. Alloys Compd. 656 (2016) 284. DOI:10.1016/j.jallcom.2015.09.15310.1016/j.jallcom.2015.09.153Search in Google Scholar
[12] P.Y. Li, Y.F. Jia, J.Y. Yi, X.D. Ma, J. Pu, D. Wang: J. Alloys Compd. 844 (2020) 156175. DOI:10.1016/j.jallcom.202.15617510.1016/j.jallcom.202.156175Search in Google Scholar
[13] Y.L. Dai: Binary alloy phase diagrams. Science Publishing Company of China, 2009.Search in Google Scholar
[14] O.N. Senkov, S.V. Senkova, C. Woodward: Acta Mater. 68 (2014) 214. DOI:10.1016/j.actamat.2014.01.02910.1016/j.actamat.2014.01.029Search in Google Scholar
[15] O.N. Senkov, C. Woodward, D.B. Miracle: JOM 66 (2014) 2030. DOI:10.1007/s11837-014-1066-010.1007/s11837-014-1066-0Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News
Articles in the same Issue
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News