Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
Abstract
Surface mechanical nano-alloying treatment (SMNAT) was employed to fabricate a nanostructured Ti coating on LZ91 Mg–Li alloy. Microstructure, surface hardness and in-vitro biocompatibility of the Ti-coated sample were investigated in comparison with those of an untreated sample. Experimental results showed that a nanostructured Ti coating with a thickness of 35 to 60 μm was formed after SMNAT for 2 h. The average grain size in the top surface of the Ti coating was about 30 nm. The surface of the Ti coating is rougher than that of the untreated LZ91 sample, in which the values of Ra, Rq and Rz were 7.83, 9.57 and 14.85 μm, respectively. The hardness of the Ti coating top surface was about 483 HV. Cell proliferation and differentiation on Ti coated samples were enhanced relative to those on the untreated samples.
Funding statement: This work was financially supported by the National Natural Science Foundation of China (51701057), the Fundamental Research Funds for the Central Universities (JZ2018HGTB0265), the Fund of Anhui Kelante Co., Ltd (W2020JSKF0061), the Industrial Guiding Fund of Changfeng County and Hefei University of Technology (JZ2019QTXM0281), and the Fund of Anhui Wanan Co., Ltd (W2019JSKF0210).
References
[1] D. Zhang, Y. Liu, Z.G. Liu: Coatings. 10 (2020) 828. DOI:10.3390/coatings1009082810.3390/coatings10090828Search in Google Scholar
[2] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal: Mater. Sci. Eng. C. 68 (2016) 948. PMid:27524097; DOI:10.1016/j.msec.2016.06.02010.1016/j.msec.2016.06.020Search in Google Scholar PubMed
[3] Y. Liu, Y.H. Wu, D. Bian, S. Gao, S. Leeflang: Acta Biomater. 62 (2017) 418. PMid:28823717; DOI:10.1016/j.actbio.2017.08.02110.1016/j.actbio.2017.08.021Search in Google Scholar PubMed
[4] W.R. Zhou, Y.F. Zheng, M.A. Leeflang, J. Zhou: Acta Biomater. 9 (2013) 8488. DOI:10.1016/j.actbio.2013.01.03210.1016/j.actbio.2013.01.032Search in Google Scholar PubMed
[5] J.Y. Wu, D.L. Zhao, B. Lee.A. Roy, R. Yao, S. Chen, Z.Y. Dong, W.R. Heineman, P.N. Kumta: ACS Biomater. Sci. Eng. 9 (2020) 1950. PMid:33455316; DOI:10.1021/acsbiomaterials.9b0159110.1021/acsbiomaterials.9b01591Search in Google Scholar PubMed
[6] R. Maurya, A.R. Siddiqui, P.K. Katiyar, K Balani: J. Mater. Sci. Technol. 35 (2019) 1767. DOI:10.1016/j.jmst.2019.03.02810.1016/j.jmst.2019.03.028Search in Google Scholar
[7] T. Mineta, H. Sato: Mater. Sci. Eng. A. 735 (2018) 418. DOI:10.1016/j.msea.2018.08.07710.1016/j.msea.2018.08.077Search in Google Scholar
[8] Niinomi. M. Mater. Trans. 49 (2008) 2170. DOI:10.2320/matertrans.L-MRA200882810.2320/matertrans.L-MRA2008828Search in Google Scholar
[9] S. Ali, A.M.A. Rani, Z. Baig: Corros. Rev. 5 (2020) 381. DOI:10.1515/corrrev-2020-000110.1515/corrrev-2020-0001Search in Google Scholar
[10] R. Pouriamanesh, J. Vahdati-Khaki, Q. Mohammadib: J. Alloys Comp. 488 (2009) 430. DOI:10.1016/j.jallcom.2009.08.15010.1016/j.jallcom.2009.08.150Search in Google Scholar
[11] E. Zhang, L.P. Xu, Y. Ke: Scr. Mater. 53 (2005) 523. DOI:10.1016/j.scriptamat.2005.05.00910.1016/j.scriptamat.2005.05.009Search in Google Scholar
[12] G.S. Wu, K.J. Ding, X.Q. Zeng, X.M. Wang, S.S. Yao: Scr. Mater. 61 (2009) 269. DOI:10.1016/j.scriptamat.2009.03.06110.1016/j.scriptamat.2009.03.061Search in Google Scholar
[13] L.Y. Mei, J. Sun.Y. Li, Y.Y. Lei, X.D. Du, Y.C. Wu: Appl. Surf. Sci. 499 (2020) 143915. DOI:10.1016/j.apsusc.2019.14391510.1016/j.apsusc.2019.143915Search in Google Scholar
[14] J. Sun, Q.T. Yao: Coatings. 6 (2016) 63. DOI:10.3390/coatings604006310.3390/coatings6040063Search in Google Scholar
[15] Q.T. Yao, J. Sun, Y.J. Zhu, W.P. Tong: Surf. Eng. 35 (2019) 927. DOI:10.1080/02670844.2018.155473810.1080/02670844.2018.1554738Search in Google Scholar
[16] J.N. Sahu, C. Sasikumar: J. Mater. Sci. Technol. 263 (2019) 285. DOI:10.1016/j.jmatprotec.2018.08.02710.1016/j.jmatprotec.2018.08.027Search in Google Scholar
[17] F. Saba, E. Kabiri, J.V. Khaki, M.H. Sabzevar: Powder Technol. 288 (2016) 76. DOI:10.3139/146.10137510.3139/146.101375Search in Google Scholar
[18] T. Varol, A. Canakci: Philos. Mag. Lett. 93 (2013) 339. DOI:10.1080/09500839.2013.77975810.1080/09500839.2013.779758Search in Google Scholar
[19] A. Canakci, F. Erdemir, T. Varol, S. Ozkaya: Powder Technol. 247 (2013) 24. DOI:10.1016/j.powtec.2013.07.00210.1016/j.powtec.2013.07.002Search in Google Scholar
[20] M. Zuo, D.G. Zhao, Z.Q. Wang, H.R. Geng: Mater. Sci. Technol. 31 (2014) 1051. DOI:10.1179/1743284714Y.000000066410.1179/1743284714Y.0000000664Search in Google Scholar
[21] W.S. Chuang, Y.C. Cai, J.C. Huang, W.Y. Tsai: Surf. Coat. Technol. 340 (2018) 145. DOI:10.1016/j.surfcoat.2018.02.06110.1016/j.surfcoat.2018.02.061Search in Google Scholar
[22] D. Fabijanic, A. Taylor, K. Ralston: Corrosion. 69 (2012) 527. DOI:10.5006/076310.5006/0763Search in Google Scholar
[23] V.Y. Zadorozhnyy, A. Shahzad, M.D. Pavlov, D. Kozak: J. Alloys Compd. 707 (2017) 351. DOI:10.1016/j.jallcom.2016.11.18910.1016/j.jallcom.2016.11.189Search in Google Scholar
[24] C.L. Chen, Suprianto: Surf. Coat. Technol. 386 (2020) 125443. DOI:10.1016/j.surfcoat.2020.12544310.1016/j.surfcoat.2020.125443Search in Google Scholar
[25] A. Canakci, F. Erdemir, T. Varol, R. Dalmış, S. Ozkaya: Powder. Technol. 268 (2014) 110. DOI:10.1016/j.powtec.2014.08.03410.1016/j.powtec.2014.08.034Search in Google Scholar
[26] K. Chen, H.M. Yang, J.S. Gao, Y. Yang: Mater. Charact. 135 (2018) 265. DOI:10.1016/j.matchar.2017.11.05110.1016/j.matchar.2017.11.051Search in Google Scholar
[27] C. Chen, X.M. Feng, Y.F. Shen: J. Alloys Compd. 813 (2020) 152223. DOI:10.1016/j.jallcom.2019.15222310.1016/j.jallcom.2019.152223Search in Google Scholar
[28] C. Chen, X.M. Feng, Y.F. Shen: J. Alloys Compd. 708 (2017) 639. DOI:10.1016/j.jallcom.2017.03.08210.1016/j.jallcom.2017.03.082Search in Google Scholar
[29] Z. Gawroński: Surf. Coat. Technol. 124 (2000) 19. DOI:10.1016/S0257-8972(99)00620-910.1016/S0257-8972(99)00620-9Search in Google Scholar
[30] Y. Li, X.C. Zhu, J. Sun, Q.T. Yao, X.D. Du, Y.C. Wu: Surf. Eng. 2020. DOI:10.1080/02670844.2020.184069310.1080/02670844.2020.1840693Search in Google Scholar
[31] L.S. Qiu, X.D. Zhu, K.W. Xu: Surf. Coat. Technol. 332 (2007) 267. Doi.org/10.1016/j.surfcoat.2017.07.076.DOI:10.1016/j.surfcoat.2017.07.07610.1016/j.surfcoat.2017.07.076Search in Google Scholar
[32] Q.Z. Chen, G.A. Thouas: Mater. Sci. Eng. R Rep. 87 (2015) 1. DOI:10.1016/j.mser.2014.10.00110.1016/j.mser.2014.10.001Search in Google Scholar
[33] J.W. Lu, Y. Zhang, W.T. Huo: Appl. Surf. Sci. 434 (2018) 63. DOI:10.1016/j.apsusc.2017.10.16810.1016/j.apsusc.2017.10.168Search in Google Scholar
[34] A. Günay-Bulutsuz, Ö. Berrak, H. Aygül-Yeprem, E.D. Arisan, M.E. Yurcia: Mater. Sci. Eng. C. 91 (2018) 382. PMid:30033268; DOI:10.1016/j.msec.2018.05.05610.1016/j.msec.2018.05.056Search in Google Scholar PubMed
[35] Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, R. Boyd: Acta Biomater. 7 (2011) 900. PMid:20887818; DOI:10.1016/j.actbio.2010.09.03310.1016/j.actbio.2010.09.033Search in Google Scholar PubMed
[36] J.T. Davies, J. Lam, P.E. Tomlins: Biomed. Mater. 5 (2010) 015002. PMid:20057015; DOI:10.1088/1748-6041/5/1/01500210.1088/1748-6041/5/1/015002Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News
Articles in the same Issue
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News