Abstract
(Mn,Fe)2(P,Si)-basedmaterials are promisingly applied in the room-temperature magnetic refrigeration field. In this study, Mn1.25Fe0.7P0.5Si0.5Cx (x = 0, 0.01, 0.03 and 0.05) alloys were prepared by arc-melting and then a two-stage sintering process. The effects of C doping on the crystal structure and magnetocaloric behavior are discussed. Results indicate that the Fe2P-type structure (space group of P62 m) was crystallized for all samples with weakened first-order magnetic transitions (FOMT). The Curie temperature could be altered from 223.5 K to 278.5 K with the large magnetocaloric effect (MCE) remaining by C doping. In the applied magnetic field of 5 T, the peak value of magnetic entropy change (–ΔSM) increased by 7.3% to reach 25.1 J × kg–1 × K–1. The temperature-induced entropy change (ΔSDSC) derived from DSC was slightly larger than ΔSM induced by the magnetic field. The Mn1.25Fe0.7P0.5Si0.5 alloys with large MCE can be effectively tuned by C doping because C atoms prefered to share the substitute and occupy the interstitial sites in hexagonal Fe2P-type structure.
Funding statement: This work was supported by Characteristic innovation projects of Guangdong Province (No. 2020 KTSCX203), and Yunfu Municipal Science and Technology Program (No. 2020A090103), Guangdong Provincial Science and Technology Program (Grant No. 2020A1414010135), Natural Science Foundation of Guangdong Province (No. 2020A1515010736, 2021A1515010451).
References
[1] B. Yu, M. Liu, P.W. Egolf, A. Kitanovski: Int. J. Refrig. 33 (2010) 1029 –1060. DOI:10.1016/j.ijrefrig.2010.04.00210.1016/j.ijrefrig.2010.04.002Suche in Google Scholar
[2] E. Brück: J. Phys. D Appl. Phys. 38 (2005) R381. DOI:10.1088/0022–3727/38/23/R0110.1088/0022–3727/38/23/R01Suche in Google Scholar
[3] K.A. Gschneidnerjr, V.K. Pecharsky, A.O. Tsokol: Rep. Prog. Phys. 68 (2005) 1479 –1539. DOI:10.1088/0034–4885/68/6/R0410.1088/0034–4885/68/6/R04Suche in Google Scholar
[4] B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen: Int. J. Refrig. 26 (2003) 622–636. DOI:10.1016/S0140–7007(03)00048–310.1016/S0140–7007(03)00048–3Suche in Google Scholar
[5] V.K. Pecharsky, K.A. Gschneidner: Phys. Rev. Lett. 23 (1997) 4494 –4497. DOI:10.1103/PhysRevLett.78.449410.1103/PhysRevLett.78.4494Suche in Google Scholar
[6] H. Wada, Y. Tanabe: Appl. Phys. Lett. 20 (2001) 3302 –3304. DOI:10.1063/1.141904810.1063/1.1419048Suche in Google Scholar
[7] F.X. Hu, B.G. Shen, J.R. Sun, Z.H. Cheng, G.H. Rao, X.X. Zhang: Appl. Phys. Lett. 23 (2001) 3675 –3677. DOI:10.1063/1.137583610.1063/1.1375836Suche in Google Scholar
[8] A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi: Phys. Rev. B 67 (2003) 104416. DOI:10.1103/PhysRevB.67.10441610.1103/PhysRevB.67.104416Suche in Google Scholar
[9] J. Liu, M. Krautz, K. Skokov, T.G. Woodcock, O. Gutfleisch: Acta Mater. 9 (2011) 3602–3611. DOI:10.1016/j.actamat.2011.02.03310.1016/j.actamat.2011.02.033Suche in Google Scholar
[10] O. Tegus, E. Brück, K.H.J. Buschow, F.R. De Boer: Nature 415 (2002) 150–152. PMid:11805828; DOI:10.1038/415150a10.1038/415150aSuche in Google Scholar PubMed
[11] N.T. Trung, Z.Q. Ou, T.J. Gortenmulder, O. Tegus, K.H.J. Buschow, E. Brück: Appl. Phys. Lett. 94 (2009) 102513. DOI:10.1063/1.309559710.1063/1.3095597Suche in Google Scholar
[12] D.T. Cam Thanh, E. Brück, N.T. Trung, J.C.P. Klaasse, K.H.J. Buschow, Z.Q. Ou, O. Tegus, L. Caron: J. Appl. Phys. 103 (2008) 07B318. DOI:10.1063/1.283695810.1063/1.2836958Suche in Google Scholar
[13] F. Guillou, G. Porcari, H. Yibole, N.H. van Dijk, E. Brück: Adv. Mater. 17 (2014) 2671 –2675. PMid:24677518; DOI:10.1002/adma.20130478810.1002/adma.201304788Suche in Google Scholar
[14] H.Y. Yu, Z.R. Zhu, J.W. Lai, Z.G. Zheng, D.C. Zeng, J.L. Zhang: J. Alloys Compd. 649 (2015) 1043 –1047. DOI:10.1016/j.jallcom.2015.07.14110.1016/j.jallcom.2015.07.141Suche in Google Scholar
[15] F.X. Hu, B.G. Shen, J.R. Sun, G.H. Wu: Phys. Rev. B 64 (2001) 419–427. DOI:10.1103/PhysRevB.64.13241210.1103/PhysRevB.64.132412Suche in Google Scholar
[16] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida: Nature 439 (2006) 957–960. PMid:16495995; DOI:10.1038/nature0449310.1038/nature04493Suche in Google Scholar
[17] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch: Nat. Mater. 11 (2012) 620–626. PMid:22635044; DOI:10.1038/nmat333410.1038/nmat3334Suche in Google Scholar
[18] M.P. Annaorazov, K.A. Asatryan, G. Myalikgulyev, S.A. Nikitin, A.M. Tishin, A.L. Tyurin: Cryogenics 32 (1992) 867 –872. DOI:10.1016/0011–2275(92)90352-B10.1016/0011–2275(92)90352-BSuche in Google Scholar
[19] F. Guillou, H. Yibole, G. Porcari, E. Brück: Phys. Status Solidi C 11 (2014) 1007–1010. DOI:10.1002/pssc.20130056910.1002/pssc.201300569Suche in Google Scholar
[20] F. Guillou, H. Yibole, N.H. van Dijk, E. Brück: J. Alloys Compd. 632 (2015) 717–722. DOI:10.1016/j.jallcom.2015.01.30810.1016/j.jallcom.2015.01.308Suche in Google Scholar
[21] N.V. Thang, X.F. Miao, N.H. van Dijk, E. Brück: J. Alloys Compd. 670 (2016) 123 –127. DOI:10.1016/j.jallcom.2016.02.01410.1016/j.jallcom.2016.02.014Suche in Google Scholar
[22] X.F. Miao, N.V. Thang, L. Caron, H. Yibole, R.I. Smith, N.H. van Dijk, E. Brück: Scr. Mater. 124 (2016) 129–132. DOI:10.1016/j.scriptamat.2016.07.01510.1016/j.scriptamat.2016.07.015Suche in Google Scholar
[23] N.V. Thang, N.H. van Dijk, E. Brück: Materials 10 (2016) 14. PMid:28772373; DOI:10.3390/ma1001001410.3390/ma10010014Suche in Google Scholar PubMed PubMed Central
[24] Z.Q. Ou, L. Zhang, N.H. Dung, L. van Eijck, A.M. Mulders, M. Avdeev, N.H. van Dijk, E. Brück: J. Magn. Magn. Mater. 340 (2013) 80–85. DOI:10.1016/j.jmmm.2013.03.02810.1016/j.jmmm.2013.03.028Suche in Google Scholar
[25] M. Yue, Z.Q. Li, X.L. Wang, D.M. Liu, J.X. Zhang, X.B. Liu: J. Appl. Phys. 105 (2009) 07A915. DOI:10.1063/1.305615710.1063/1.3056157Suche in Google Scholar
[26] N.V. Thang, H. Yibole, N.H. van Dijk, E. Brück: J. Alloys Compd. 699 (2017) 633 –637. DOI:10.1016/j.jallcom.2016.12.40210.1016/j.jallcom.2016.12.402Suche in Google Scholar
[27] X.F. Miao, L. Caron, P. Roy, N.H. Dung, L. Zhang, W.A. Kockelmann, R.A. De Groot, N.H. van Dijk, E. Brück: Phys. Rev. B 89 (2014) 174429. DOI:10.1103/PhysRevB.89.17442910.1103/PhysRevB.89.174429Suche in Google Scholar
[28] N.H. Dung, L. Zhang, Z.Q. Ou, L. Zhao, L. van Eijck, A.M. Mulders, M. Avdeev, E. Suard, N.H. van Dijk, E. Brück: Phys. Rev. B 86 (2012) 045134. DOI:10.1103/PhysRevB.86.04513410.1103/PhysRevB.86.045134Suche in Google Scholar
[29] H. Yabuta, K. Umeo, T. Takabatake, L. Chen, Y. Uwatoko: J. Magn. Magn. Mater. 310 (2007) 1826 –1828. DOI:10.1016/j.jmmm.2006.10.69910.1016/j.jmmm.2006.10.699Suche in Google Scholar
[30] N.V. Thang, H. Yibole, X.F. Miao, K. Goubitz, L. van Eijck, N.H. van Dijk, E. Brück: JOM 69 (2017) 1432 –1438. DOI:10.1007/s11837–017–2400–010.1007/s11837–017–2400–0Suche in Google Scholar
[31] B.A. Hunter, C.J. Howard, Rietica, Australian Nuclear Science and Technology Organization: Menai, Australia, 2000.Suche in Google Scholar
[32] L. Caron, Z.Q. Ou, T.T. Nguyen, D.T. Cam Thanh, O. Tegus, E. Brück: J. Magn. Magn. Mater. 321 (2009) 3559 –3566. DOI:10.1016/j.jmmm.2009.06.08610.1016/j.jmmm.2009.06.086Suche in Google Scholar
[33] A. He, V. Svitlyk, Y. Mozharivskyj: Inorg. Chem. 56 (2017) 2827 –2833. DOI:10.1021/acs.inorgchem.6b0291210.1021/acs.inorgchem.6b02912Suche in Google Scholar PubMed
[34] R. Kirk, K.P Arjun, M. Yaroslav, V.K. Pecharsky: Acta Mater. 145 (2018) 369–376. DOI:10.1016/j.actamat.2017.12.02410.1016/j.actamat.2017.12.024Suche in Google Scholar
[35] C.F. Li, Z.G. Zheng, W.H. Wang, J.Y. Liu, L. Lei, D.C. Zeng: Physica B 594 (2020) 412309. DOI:10.1016/J.PHYSB.2020.41230910.1016/J.PHYSB.2020.412309Suche in Google Scholar
[36] J.W. Lai, X. Tang, H. Sepehri-Amin, K. Hono: Scr. Mater. 183 (2020) 127–132. DOI:10.1016/j.scriptamat.2020.03.02410.1016/j.scriptamat.2020.03.024Suche in Google Scholar
[37] Z.G. Zheng, D.C. Zeng, Z.G. Qiu: J. Magn. Magn. Mater. 465 (2018) 19–24. DOI:10.1016/j.jmmm.2018.05.08210.1016/j.jmmm.2018.05.082Suche in Google Scholar
[38] Z.G. Zheng, L. Lei, W.Q. Zeng, Z.G. Qiu, Y. Hong, D.C. Zeng: Int. J. Mater. Res. 111 (2020) 744–752. DOI:10.3139/146.11193410.3139/146.111934Suche in Google Scholar
[39] A.C. Ferrari, J. Robertson: Philos. Trans. A Math. Phys. Eng. Sci. 362 (2004) 2477–2512. PMid:15482988; DOI:10.1098/rsta.2004.145210.1098/rsta.2004.1452Suche in Google Scholar PubMed
[40] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus: Phys. Rep. 473 (2009) 51–87. DOI:10.1016/j.physrep.2009.02.00310.1016/j.physrep.2009.02.003Suche in Google Scholar
[41] P.V. Krasovskii, S.K. Sigalaev, Y.V. Grigoriev: Ceram. Int. 47 (2021) 7957–7965. DOI:10.1016/J.CERAMINT.2020.11.14510.1016/J.CERAMINT.2020.11.145Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News
Artikel in diesem Heft
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News