Startseite Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element

  • Ahmad Farrahnoor und Hussain Zuhailawati EMAIL logo
Veröffentlicht/Copyright: 22. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Biomedical titanium alloys with elastic moduli close to that of cortical bone have gained great attention in the field of bone implantation. A low modulus is desirable in an implant to prevent stress shielding, which usually leads to critical clinical issues, such as bone resorption and implant loosening. The use of β-type titanium with nontoxic alloying elements, such as niobium, as a novel candidate of implant material for replacing failed hard tissues has shown great potential. This review describes a titanium implant application alloyed with niobium and the mechanical properties and bioactivity of various titanium alloys sintered at different temperatures.


Prof. Ir. Ts. Dr. Zuhailawati Hussain School of Materials and Mineral Resources Engineering Universiti Sains Malaysia 14300 Nibong Tebal Pulau Pinang Malaysia Tel. : +60 45995258 Fax : +60 45996907 Web : www.eng.usm.my

References

[1] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li: Materials 7 (2014) 1709 –1800. PMid:28788539; DOI:10.3390/ma703170910.3390/ma7031709Suche in Google Scholar PubMed PubMed Central

[2] B.P. Bannon, E.E. Mild: ASTM (1983) 7–15. DOI:10.1520/STP28931S10.1520/STP28931SSuche in Google Scholar

[3] F.N. Ahmad and H. Zuhailawati, H.: Int. J. Electroactive Mater. 8 (2020) 63–67.Suche in Google Scholar

[4] E. Almanza, M.J. Pérez, N.A. Rodríguez, L.E. Murr: J. Mater. Res. Technol. 6 (2017) 251 –257. DOI:10.1016/j.jmrt.2017.05.00310.1016/j.jmrt.2017.05.003Suche in Google Scholar

[5] N. Eliaz: Materials 12 (2019) 1–91. PMid:30696087; DOI:10.3390/ma1203040710.3390/ma12030407Suche in Google Scholar PubMed PubMed Central

[6] X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna: Regen. Biomater. 4 (2017) 315–323. PMid:29026646; DOI:10.1093/rb/rbx02710.1093/rb/rbx027Suche in Google Scholar PubMed PubMed Central

[7] M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina: J. Funct. Biomater. 8 (2017) 1–15. PMid:28954399; DOI:10.3390/jfb804004410.3390/jfb8040044Suche in Google Scholar PubMed PubMed Central

[8] K.A. Nazari, A. Nouri, T. Hilditch: Mater. Des. 88 (2015) 1164–1174. DOI:10.1016/j.matdes.2015.09.10610.1016/j.matdes.2015.09.106Suche in Google Scholar

[9] C. Salvo, C. Aguilar, R. Cardoso-Gil, A. Medina, L. Bejar, R.V. Mangalaraja: J. Alloys Compd. 720 (2017) 254–263. DOI:10.1016/j.jallcom.2017.05.26210.1016/j.jallcom.2017.05.262Suche in Google Scholar

[10] N.H.N.E.A. Shah, M. Yahaya, M. Sulaiman, M.H. Ismail: Jurnal Teknologi 76 (2015). DOI:10.11113/jt.v76.571310.11113/jt.v76.5713Suche in Google Scholar

[11] S. Leong, W. Yee, F. Edith, J. Alloys Compd. 660 (2016) 461–470. DOI:10.1016/j.jallcom.2015.11.14110.1016/j.jallcom.2015.11.141Suche in Google Scholar

[12] E. Frutos, M. Karlík, J.A. Jiménez, H. Langhansová, J. Lieskovská, T. Polcar: Mater. Des. 142 (2018) 44–55. DOI:10.1016/j.matdes.2018.01.01410.1016/j.matdes.2018.01.014Suche in Google Scholar

[13] X. Rao, C.L. Chu, Y.Y. Zheng: J. Mech. Behav. Biomed. Mater. 34 (2014) 27–36. PMid:24556322; DOI:10.1016/j.jmbbm.2014.02.00110.1016/j.jmbbm.2014.02.001Suche in Google Scholar

[14] F.N. Ahmad, Z. Hussain: J. Phys.: Conf. Ser. 1082 (2018) 012083. DOI:10.1088/1742-6596/1082/1/01208310.1088/1742-6596/1082/1/012083Suche in Google Scholar

[15] D.S.M. Vishnu, J. Sure, Y. Liu, R.V. Kumar, C. Schwandt: Mater. Sci. Eng. C 96 (2019) 466 –478. PMid:30606556; DOI:10.1016/j.msec.2018.11.02510.1016/j.msec.2018.11.025Suche in Google Scholar

[16] J. Fojt, L. Joska, J. Malek, V. Sefl: Mater. Sci. Eng. C 56 (1025) 532–537. PMid:26249624; DOI:10.1016/j.msec.2015.07.02910.1016/j.msec.2015.07.029Suche in Google Scholar

[17] F.N. Ahmad: PhD thesis, Mechanical properties and bioactivity of Ti-Nb-HA composite fabricated by mechanical alloying, Universiti Sains Malaysia, Malaysia (2020).Suche in Google Scholar

[18] K. Zhang: PhD thesis, The microstructure and properties of hipped powder Ti alloy, University of Birmingham, UK (2009).Suche in Google Scholar

[19] M. Bönisch: PhD thesis, Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys, Technische Univ. Dresden, Germany (2016).Suche in Google Scholar

[20] Y.L. Zhou, M. Niinomi: J. Alloys Compd. 466 (2008) 535 –542. DOI:10.1016/j.jallcom.2007.11.09010.1016/j.jallcom.2007.11.090Suche in Google Scholar

[21] L.B. Zhang, K.Z. Wang, L.J. Xu, S.L. Xiao, Y.Y. Chen: Trans. Nonferrous Met. Soc. China 25 (2015) 2214 –2220. DOI:10.1016/S1003-6326(15)63834-110.1016/S1003-6326(15)63834-1Suche in Google Scholar

[22] M.S. Oh, J.Y. Lee, J.K. Park: Metall. Mater. Trans. A 35 (2004) 3071 –3077. DOI:10.1007/s11661-004-0052-510.1007/s11661-004-0052-5Suche in Google Scholar

[23] S.K. Kim, J.K. Park: Metall. Mater. Trans. A 33 (2002) 1051–1056. DOI:10.1007/s11661-002-0206-210.1007/s11661-002-0206-2Suche in Google Scholar

[24] K. Zhuravleva: PhD thesis, Porous ß-type Ti-Nb alloy for biomedical applications, der Technischen Universität Dresden, Germany (2014).Suche in Google Scholar

[25] A. Shinbine: Master thesis, In-situ evaluation of the hcp to bcc phase transformation kinetics in commercially pure titanium and Ti-5Al-5Mo-5 V-3Cr alloy using laser ultrasonics, University of British Columbia, Canada (2016).Suche in Google Scholar

[26] S. Guo, Q. Meng, X. Zhao, Q. Wei, H. Xu: Sci. Rep. 5 (2015) 14688. DOI:10.1038/srep1468810.1038/srep14688Suche in Google Scholar PubMed PubMed Central

[27] H. Li, T. Lei, J. Zhao, Q. Shang, Z. Lin, \Production of Ti-13Nb-13Zr alloy by powder metallurgy (P/M) via sintering hydrides. Mater. Manuf. Process 31 (2016) 719–724. DOI:10.1080/10426914.2014.99477510.1080/10426914.2014.994775Suche in Google Scholar

[28] D. Roberto, D. Santos, V.André, R. Henriques, C. Alberto, A. Cairo, M. Dos, S. Pereira: Mat. Res. 8 (2005) 439 –442. DOI:10.1590/S1516-1439200500040001410.1590/S1516-14392005000400014Suche in Google Scholar

[29] G.V. Martins, C.R.M. Silva, C.A. Nunes, V.A.R. Henriques, L.A. Borges Junior, J.P.B Machado: Materials Science Forum 660–661 (2010) 170–175. DOI:10.4028/www.scientific.net/MSF.660-661.15210.4028/www.scientific.net/MSF.660-661.152Suche in Google Scholar

[30] G.T. Aleixo, C.R.M. Afonso, A.A. Coelho, R. Caram: Solid State Phenom. 138 (2018) 393 –398. DOI:10.4028/www.scientific.net/SSP.138.39310.4028/www.scientific.net/SSP.138.393Suche in Google Scholar

[31] F.J. Gil, M.P. Ginebra, J.M. Manero, J.A. Planell: J. Alloys Compd. 329 (2001) 142 –152. DOI:10.1016/S0925-8388(01)01571-710.1016/S0925-8388(01)01571-7Suche in Google Scholar

[32] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme: Biomaterials 25 (2004) 5705–5713. PMid:15147816; DOI:10.1016/j.biomaterials.2004.01.02110.1016/j.biomaterials.2004.01.021Suche in Google Scholar PubMed

[33] D. Raabe, B. Sander, M. Friák, D.Ma., J. Neugebauer: Acta Mater. 55(2007) 4475–4487. DOI:10.1016/j.actamat.2007.04.02410.1016/j.actamat.2007.04.024Suche in Google Scholar

[34] P.F. Gostin, A. Helth, A. Voss, R. Sueptitz, M. Calin, J. Exkert, A. Gebert: J. Biomed. Mater. Res. B Appl. Biomater. 101 (2013) 269–278. PMid:23166048; DOI:10.1002/jbm.b.3283610.1002/jbm.b.32836Suche in Google Scholar PubMed

[35] Y. Bai, Y. Deng, Y. Zheng, Y. Li, R. Zhang, Y. Lv, Q. Zhao, S. Wei: Mater. Sci. Eng. C 59 (2016) 565–576. PMid:26652409; DOI:10.1016/j.msec.2015.10.06210.1016/j.msec.2015.10.062Suche in Google Scholar PubMed

[36] W. Zhao, Y. Liu, H. Jiang, Q. Peng: J. Alloys Compd. 462 (2008) 103–108. DOI:10.1016/j.jallcom.2007.08.04710.1016/j.jallcom.2007.08.047Suche in Google Scholar

[37] M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song, Y.J. Park: Materials 8 (2015) 5986 –6003. DOI:10.3390/ma809528710.3390/ma8095287Suche in Google Scholar PubMed PubMed Central

[38] M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer: Materials 5 (2012) 1853–1872. DOI:10.3390/ma510185310.3390/ma5101853Suche in Google Scholar

[39] M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Acta Mater. 59 (2011) 6208 –6218. DOI:10.1016/j.actamat.2011.06.01510.1016/j.actamat.2011.06.015Suche in Google Scholar

[40] M. Nakai, M. Niinomi, T. Akahori, H. Tsutsumi, M. Ogawa: Mater. Trans. 50 (2009) 2716–2720. DOI:10.2320/matertrans.MA20090410.2320/matertrans.MA200904Suche in Google Scholar

[41] L.M. da Silva, A.P.R.A Claro, T.A.G. Donato, V.E. Arana-Chavez, J.C.S. Moraes, M.A.R. Buzalaf, C.R. Grandini: Artif. Organs 35 (2011) 516–521. DOI:10.1111/j.1525-1594.2011.01263.x10.1111/j.1525-1594.2011.01263.xSuche in Google Scholar PubMed

[42] H. Matsumoto, S. Watanabe, N. Masahashi, S. Hanada: ,\ Metall. Mater. Trans. A 37 (2006) 3239–3249. DOI:10.1007/BF0258615910.1007/BF02586159Suche in Google Scholar

[43] K. Chou, E.A. Marquis: Acta Mater. 181 (2019) 367–376. DOI:10.1016/j.actamat.2019.09.04910.1016/j.actamat.2019.09.049Suche in Google Scholar

[44] F.B. Vicente, D.R.N. Correa, T.A.G. Donato, V.E. Arana-Chavez, M.A.R. Buzalaf, C.R. Grandini: Materials 7 (2014) 542–553. PMid:28788473; DOI:10.3390/ma701054210.3390/ma7010542Suche in Google Scholar PubMed PubMed Central

[45] L. Slokar, T. Matković, P. Matković: Mater. Des. 33 (2012) 26–30. DOI:10.1016/J.MATDES. 2011.06.05210.1016/J.MATDES.2011.06.052Suche in Google Scholar

[46] J.M. Chaves, O. Florêncioa, P.S. Silva Jr., P.W.B. Marquesa, C.R.M. Afonso: J. Mech. Behv. Biomed. Mater. 46 (2015) 184–196. PMid:25796065; DOI:10.1016/j.jmbbm.2015.02.03010.1016/j.jmbbm.2015.02.030Suche in Google Scholar PubMed

[47] J.J.G. Moreno, M. Bönisch, N.T. Panagiotopoulos, M. Calin, D.G. Papageorgiou, A. Gebert, J. Eckert, G.A. Evangelakis, C.E. Lekka: J. Alloys Compd. 696 (2017) 481 –489. DOI:10.1016/j.jallcom.2016.11.23110.1016/j.jallcom.2016.11.231Suche in Google Scholar

[48] Y.F. Xu, D.Q. Yi, H.Q. Liu, B. Wang, F.L. Yang: Mater. Sci. Eng. A 529 (2011) 326 –334. DOI:10.1016/J.MSEA.2011.09.03510.1016/J.MSEA.2011.09.035Suche in Google Scholar

[49] C.M. Lee, C.P. Ju, J.H. Chern Lin: J. Oral Rehabil. 29 (2002) 314–322. DOI:10.1046/j.1365-2842.2002.00825.x10.1046/j.1365-2842.2002.00825.xSuche in Google Scholar PubMed

[50] E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, R. Caram Lopes: Materials Characterization 62 (2011) 673 –680. DOI:10.1016/j.matchar.2011.04.01510.1016/j.matchar.2011.04.015Suche in Google Scholar

[51] K. Niespodziana, K. Jurczyk, J. Jakubowicz, M. Jurczyk, M.: Mater. Chem. Phys. 123 (2010) 160–165. DOI:10.1016/j.matchemphys.2010.03.07610.1016/j.matchemphys.2010.03.076Suche in Google Scholar

[52] K. Ozaltin, W. Chrominski, M. Kulczyk, A. Panigrahi, J. Horky, M. Zehetbauer, M. Lewandowska: J. Mater. Sci. 49 (2014) 6930 –6936. DOI:10.1007/s10853-014-8397-710.1007/s10853-014-8397-7Suche in Google Scholar

[53] Z. Chen: Nanoindentation of macro-porous materials for elastic modulus and hardness determination, Applied Nanoindentation in Advanced Materials (2017) 135–156. DOI:10.1002/9781119084501.ch610.1002/9781119084501.ch6Suche in Google Scholar

[54] R. Oriňaková, A. Oriňak, M. Kupková, M. Hrubovčáková, L. Škantárová, A.M. Turoňová, L.M. Bučková, C. Muhmann, H.F. Arlinghaus: Int. J. Electrochem. Sci. 10 (2015) 659–670.10.1016/S1452-3981(23)05021-6Suche in Google Scholar

[55] M. Lai, Y. Gao, B. Yuan, M. Zhu: Mater. Des. 60 (2014) 193–197. DOI:10.1016/j.matdes.2014.03.06710.1016/j.matdes.2014.03.067Suche in Google Scholar

[56] L.M. Zou, C. Yang, Y. Long, Z.Y. Xiao, Y.Y. Li: Powder Metallurgy 55 (2012) 65–70. DOI:10.1179/1743290111Y.000000002110.1179/1743290111Y.0000000021Suche in Google Scholar

[57] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki: Mater. Sci. Eng. A 438 (2006) 839 –843. DOI:10.1016/j.msea.2006.02.13610.1016/j.msea.2006.02.136Suche in Google Scholar

[58] H.Y. Kim, J. Fu, H. Tobe, J.I. Kim, S. Miyazaki: Shape Memory and Superelasticity 1 (2015) 107–116. DOI:10.1007/s40830-015-0022-310.1007/s40830-015-0022-3Suche in Google Scholar

[59] A.P. Mouritz: Introduction to aerospace materials, Woodhead Publishing Limited, United Kingdom (2012) 202–223. DOI:10.1533/978085709515210.1533/9780857095152Suche in Google Scholar

[60] C. Schulze, M. Weinmann, C. Schweigel, O. Keßler, R. Bader: Materials (Basel) 11 (2018) 1–20. PMid:29342864; DOI:10.3390/ma1101012410.3390/ma11010124Suche in Google Scholar PubMed PubMed Central

[61] D. Kalita, L. Rogal, T. Czeppe, A. Wo’jcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz: J. Mater. Eng. Perform. 29 (2019) 1445–1452. DOI:10.1007/s11665-019-04417-010.1007/s11665-019-04417-0Suche in Google Scholar

[62] S. Hanada, H. Matsumoto, S.Watanabe: International Congress Series 1284 (2005) 239–247. DOI:10.1016/j.ics.2005.06.08410.1016/j.ics.2005.06.084Suche in Google Scholar

[63] M. Yahaya, S. Sahidin@Salehudin, M. Sulaiman, N.H.N.E. Azham Shah, M.H. Ismail: Materials Science Forum 863 (2016) 14–18. DOI: 10.4028/www.scientific.863.1410.4028/www.scientific.863.14Suche in Google Scholar

[64] A. Thoemmes, I.A. Bataev, N.S. Belousova, D.V. Lazurenko: 11th International Forum on Strategic Technology (IFOST) (2016) 26–29. DOI:10.1109/IFOST.2016.788410110.1109/IFOST.2016.7884101Suche in Google Scholar

[65] M. Kikuchi, M. Takahashi, O. Okuno: Dent. Mater. J. 22 (2003) 328–342. PMid:14620999; DOI:10.4012/dmj.22.32810.4012/dmj.22.328Suche in Google Scholar PubMed

[66] R.P. Kolli, A. Devaraj: Metals 8 (2018) 1–41. DOI:10.3390/met807050610.3390/met8070506Suche in Google Scholar

[67] M. Lai, Y. Gao, B. Yuan, M. Zhu: Mat. Des. 87 (2015) 466–472. DOI:10.1016/j.matdes.2015.07.18010.1016/j.matdes.2015.07.180Suche in Google Scholar

[68] E. Yılmaz, A. Gökçe, F. Findik, H. Gulsoy: J. Alloys Compd. 746 (2018) 301–313. DOI:10.1016/j.jallcom.2018.02.27410.1016/j.jallcom.2018.02.274Suche in Google Scholar

[69] Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan, B. Song, Y. Shi: Mater. Des. 126 (2017) 268–277. DOI:10.1016/j.matdes.2017.04.02610.1016/j.matdes.2017.04.026Suche in Google Scholar

[70] Y.-H. Hon, J.-Y. Wang, Y.-N. Pan: Mater. Trans. 44 (2003) 2384 –2390. DOI: 0.2320/matertrans.44.2384. DOI:10.2320/matertrans.44.238410.2320/matertrans.44.2384Suche in Google Scholar

[71] D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak: J. Mech. Behav. Biomed. Mater. 28 (2013) 171 –182. PMid:23994942; DOI:10.1016/j.jmbbm.2013.08.01310.1016/j.jmbbm.2013.08.013Suche in Google Scholar PubMed

[72] D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, F. Pyczak: J. Alloys Compd. 640 (2015) 393–400. DOI:10.1016/j.jallcom.2015.04.03910.1016/j.jallcom.2015.04.039Suche in Google Scholar

[73] B. Sharma, S.K. Vajpai, K. Ameyama: J. Alloys. Compd. 656 (2015) 978–986. DOI:10.1016/j.jallcom.2015.10.05310.1016/j.jallcom.2015.10.053Suche in Google Scholar

[74] M.W.D. Mendes, C.G. Ágreda, A.H.A. Bressiani, J.C. Bressiani: Mater. Sci. Eng. C 63 (2016) 671–677. PMid:27040264; DOI:10.1016/j.msec.2016.03.05210.1016/j.msec.2016.03.052Suche in Google Scholar PubMed

[75] V.A.R. Henriques, C.A.A. Cairo, C.R.M. Silva, J.C.C. Bressiani: Materials Science Forum 498–499 (2005) 40–48. DOI:10.4028/www.scientific.net/MSF.498-499.4010.4028/www.scientific.net/MSF.498-499.40Suche in Google Scholar

[76] L. Shapira, A. Klinger, A. Tadir, A. Wilensky, A. Halabi: Clin. Oral Implants Res. 20 (2009) 578 –582. DOI:10.1111/j.1600-0501.2009.01707.x10.1111/j.1600-0501.2009.01707.xSuche in Google Scholar

[77] K. Rajamallu, B.K. Kodli, A. Rajendran, J. Nivedhitha, D.K. Pattanayak, K. Ameyama, S.R. Dey: Mater. Sci. Eng. C 94 (2018) 619–627. PMid:30423747; DOI:10.1016/j.msec.2018.10.00610.1016/j.msec.2018.10.006Suche in Google Scholar PubMed

Received: 2020-08-26
Accepted: 2021-03-01
Published Online: 2021-06-22
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8060/html
Button zum nach oben scrollen