Abstract
The use of ceramic particles in the matrix of alloy coatings during the electroplating process has received considerable attention. These particles can create properties such as high corrosion resistance, insolubility, high-temperature stability, strong hardness, and self-lubrication capability. Herein, an Ni–P–W–TiO2 coating was deposited on an AISI 304L steel substrate using the electroplating method. Electroplating was performed at current densities of 10, 15, 20, and 25 mA · cm–2, and the effect of current density on microstructure, corrosion behavior, and wear behavior was investigated. The coatings were characterized by means of scanning electron microscopy. To investigate corrosion resistance, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed in a 3.5% NaCl aqueous solution. A pin-on-disk test was conducted to test the wear resistance of uncoated and coated samples. Sample micro-hardness was also measured by Vickers hardness testing. Examination of the microstructure revealed that the best coating was produced at a current density of 20 mA · cm–2. The results of potentiodynamic polarization and electrochemical impedance spectroscopy tests were consistent with microscopic images. The coating created at the current density of 20 mA · cm–2 had the highest corrosion resistance compared to other coated and non-coated samples. Furthermore, the results of the wear test showed that increasing the current density of the electroplating path up to 20 mA · cm–2 enhances micro-hardness and wear resistance.
References
[1] S. Mahdavi, S. Allahkaram: J. Alloys Compd. 635 (2015) 150–157. DOI:10.1016/j.jallcom.2015.02.11910.1016/j.jallcom.2015.02.119Suche in Google Scholar
[2] P. Gadhari, P. Sahoo: Mater. Today 2 (2015) 2367 –2374. DOI: doi.org/10.1016/j.matpr.2015.07.303.doi.org/10.1016/j.matpr.2015.07.303Suche in Google Scholar
[3] A. Bai, P.Y. Chuang, C.C. Hu: Mater. Chem. Phys. 82 (2003) 93–100. DOI:10.1016/S0254-0584(03)00193-710.1016/S0254-0584(03)00193-7Suche in Google Scholar
[4] G. Parida, D. Chaira, M. Chopkar, A. Basu: Surf. Coat. Technol. 205 (2011) 4871–4879. DOI:10.1016/j.surfcoat.2011.04.10210.1016/j.surfcoat.2011.04.102Suche in Google Scholar
[5] A.R.K. Rana, Z. Farhat: Surf. Coat. Technol. 369 (2019) 334–346. DOI:10.1016/j.surfcoat.2019.04.04310.1016/j.surfcoat.2019.04.043Suche in Google Scholar
[6] J. Novakovic, P. Vassiliou, K. Samara, T. Argyropoulos: Surf. Coat. Technol. 201 (2006) 895 –901. DOI:10.1016/j.surfcoat.2006.01.00510.1016/j.surfcoat.2006.01.005Suche in Google Scholar
[7] C.M. Das, P.K. Limaye, A.K. Grover, A.K. Suri: J. Alloys Comp. 436 (2007) 328–334. DOI:10.1016/j.jallcom.2006.07.03610.1016/j.jallcom.2006.07.036Suche in Google Scholar
[8] Abdel Hamid, S.A. El Badry, A.A. Aal: Surf. Coat. Technol. 201 (2007) 5948–5953. DOI:10.1016/j.surfcoat.2006.11.00110.1016/j.surfcoat.2006.11.001Suche in Google Scholar
[9] E.P. Randviir, D.A. Brownson, C.E. Banks: Mater. Today 17 (2014) 426–432. DOI:10.1016/j.mattod.2014.06.00110.1016/j.mattod.2014.06.001Suche in Google Scholar
[10] S.K. Tien, J.G. Duh: Thin Solid Films 469 (2004) 268–273. DOI:10.1016/j.tsf.2004.08.17910.1016/j.tsf.2004.08.179Suche in Google Scholar
[11] M. Palaniappa, S.K. Seshadri: Mater. Sci. Eng. 460 (2007) 638–644. DOI:10.1016/j.msea.2007.01.13410.1016/j.msea.2007.01.134Suche in Google Scholar
[12] J.N. Balaraju, Kalavati, K.S. Rajam: J. Alloys Compd. 486 (2009) 468–473. DOI:10.1016/j.jallcom.2009.06.17310.1016/j.jallcom.2009.06.173Suche in Google Scholar
[13] F.B. Wu, S.K. Tien, W.Y. Chen, J.G. Duh: Surf. Coat. Technol. 177 (2004) 312–316. DOI:10.1016/j.surfcoat.2003.09.01010.1016/j.surfcoat.2003.09.010Suche in Google Scholar
[14] S.K. Tien, J.G. Duh, Y.I. Chen: Thin Solid Films 469 (2004) 333–338. DOI:10.1016/j.tsf.2004.08.14610.1016/j.tsf.2004.08.146Suche in Google Scholar
[15] S. Kundu, S.k. Das, P. Sahoo: Surf. Interfaces 14(2019) 192–207. DOI:10.1016/j.surfin.2018.12.00710.1016/j.surfin.2018.12.007Suche in Google Scholar
[16] H. Zhou, Z. Liao, C. Fang, H. Li, B. Feng, S. Xu, G. Cao, Y. Kuang: Trans. Nonferrous Met. Soc. China 28 (2018) 88–95. DOI:10.1016/S1003-6326(18)64641-210.1016/S1003-6326(18)64641-2Suche in Google Scholar
[17] Y.J. Xue, X.Z. Jia, Y.W. Zhou, W. Ma, J.S. Li: Surf. Coat. Technol. 200 (2006) 5677–5681. DOI:10.1016/j.surfcoat.2005.08.00210.1016/j.surfcoat.2005.08.002Suche in Google Scholar
[18] N. Qu, D. Zhu, K. Chan: Scr. Mater. 54 (2006) 1421–1425. DOI:10.1016/j.scriptamat.2005.10.06910.1016/j.scriptamat.2005.10.069Suche in Google Scholar
[19] L. Chen, L. Wang, Z. Zeng, J. Zhang: Mater. Sci. Eng. A 434 (2006) 319–325. DOI:10.1016/j.msea.2006.06.09810.1016/j.msea.2006.06.098Suche in Google Scholar
[20] E. Rudnik, L. Burzyńska, Ł. Dolasiński, M. Misiak: Appl. Surf. Sci. 256 (2010) 7414–7420. DOI:10.1016/j.apsusc.2010.05.08210.1016/j.apsusc.2010.05.082Suche in Google Scholar
[21] I.U. Haq, K. Akhtar, T.I. Khan, A.A. Shah: Surf. Coat. Technol. 235 (2013) 691–698. DOI:10.1016/j.surfcoat.2013.08.04810.1016/j.surfcoat.2013.08.048Suche in Google Scholar
[22] L. Burzyńska, E. Rudnik, J. Koza, L. Bła_z, W. Szymański: Surf. Coat. Technol. 202 (2008) 2545 –2556. DOI:10.1016/j.surfcoat.2007.09.02010.1016/j.surfcoat.2007.09.020Suche in Google Scholar
[23] I. Saravanan, A. Elayaperumal, A. Devaraju, M. Karthikeyan, A. Raji: Materials Today, Proceedings 22(2020) 1135 –1139. DOI:10.1016/j.matpr.2019.12.00710.1016/j.matpr.2019.12.007Suche in Google Scholar
[24] M. Ram, M. Kumar, A. Ansari, S. Sharma, A. Sharma: Materials Today, Proceedings 21(2020) 1200 –1212. DOI:10.1016/j.matpr.2020.01.07010.1016/j.matpr.2020.01.070Suche in Google Scholar
[25] F. Saeidpour, M. Zandrahimi, H. Ebrahimifar: Mater. at High Temp. (2020) 1–12. DOI:10.1080/09603409.2019.170929210.1080/09603409.2019.1709292Suche in Google Scholar
[26] M. Abaei, M. Zandrahimi, H. Ebrahimifar: Int. J. Mater. Res. 110 (2019) 253–260. DOI:10.3139/146.11174010.3139/146.111740Suche in Google Scholar
[27] A. Rashidi, A. Amadeh: J. Mater. Sci. Technol. 26 (2010) 82–86. DOI:10.1016/S1005-0302(10)60013-810.1016/S1005-0302(10)60013-8Suche in Google Scholar
[28] S.C. Wang, W.C.J. Wei: Mater. Chem. Phys. 78 (2003) 574–580. DOI:10.1016/S0254-0584(01)00564-810.1016/S0254-0584(01)00564-8Suche in Google Scholar
[29] P. Baghery, M. Farzam, A. Mousavi, M. Hosseini: Surf. Coat. Technol. 204 (2010) 3804–3810. DOI:10.1016/j.surfcoat.2010.04.06110.1016/j.surfcoat.2010.04.061Suche in Google Scholar
[30] U. Sarac, M.C. Baykul: J. Alloys Compd. 552 (2013) 195 –201. DOI:10.1016/j.jallcom.2012.10.07110.1016/j.jallcom.2012.10.071Suche in Google Scholar
[31] R. Saha, T. Khan: Surf. Coat. Technol. 205 (2010) 890–895. DOI:10.1016/j.surfcoat.2010.08.03510.1016/j.surfcoat.2010.08.035Suche in Google Scholar
[32] N. Guglielmi: J.Electrochem. Soc. 119 (1972) 1009 –1012. DOI:10.1149/1.240438310.1149/1.2404383Suche in Google Scholar
[33] Y. Li, H. Jiang, W. Huang, H. Tian: Appl. Surf. Sci. 254 (2008) 6865 –6869. DOI:10.1016/j.apsusc.2008.04.08710.1016/j.apsusc.2008.04.087Suche in Google Scholar
[34] H. Gül, F. Kılıç, M. Uysal, S. Aslan, A. Alp, H. Akbulut: Appl. Surf. Sci. 258 (2012) 4260 –4267. DOI:10.1016/j.apsusc.2011.12.06910.1016/j.apsusc.2011.12.069Suche in Google Scholar
[35] E. Pavlatou, M. Stroumbouli, P. Gyftou, N. Spyrellis: J. Appl. Electrochem. 36 (2006) 385–394. DOI:10.1007/s10800-005-9082-y10.1007/s10800-005-9082-ySuche in Google Scholar
[36] A. Cziraki, B. Fogarassy, I. Geröcs, E. Toth-Kadar, I. Bakonyi: J. Mater. Sci. 29 (1994) 4771 –4777. DOI:10.1007/BF0035652210.1007/BF00356522Suche in Google Scholar
[37] N.K. Shrestha, T. Takebe, T. Saji: Diam. Relat. Mater. 15 (2006) 1570 –1575. DOI:10.1016/j.diamond.2005.12.04010.1016/j.diamond.2005.12.040Suche in Google Scholar
[38] H.K. Lee, H.Y. Lee, J.-M. Jeon: Surf. Coat. Technol. 201 (2007) 4711 –4717. DOI:10.1016/j.surfcoat.2006.10.00410.1016/j.surfcoat.2006.10.004Suche in Google Scholar
[39] J. Tafel, Z. Physik. Chem. 50 (1905) 6661.10.1515/zpch-1905-5043Suche in Google Scholar
[40] J.O’M. Bockris, A.K.N. Reddy: Modern Electrochemistry, vol. 1, Springer US (1977) 15. DOI:10.1007/978-1-4615-7464-4_110.1007/978-1-4615-7464-4_1Suche in Google Scholar
[41] E. McCafferty: Corros. Sci. 47 (2005) 3202 –3215. DOI:10.1016/j.corsci.2005.05.04610.1016/j.corsci.2005.05.046Suche in Google Scholar
[42] H. Eyring, S. Glasstone, K.J. Laidler, J. Chem. Phys. 7 (1939) 1053 –1065. DOI:10.1063/1.175036410.1063/1.1750364Suche in Google Scholar
[43] J.O’M. Bockris, A.K.N. Reddy: Modern Electrochemistry,vol. 2, Springer US(1977) 883.Suche in Google Scholar
[44] E. McCafferty, J.V. McArdle: J. Electrochem. Soc. 142 (1995) 1447. DOI:10.1149/1.204859510.1149/1.2048595Suche in Google Scholar
[45] E. McCafferty: J. Electrochem. Soc. 121 (1974) 1007. DOI:10.1149/1.240196810.1149/1.2401968Suche in Google Scholar
[46] D.V. Matyushov: J. Chem. Phys. 130 (2009), 234704. PMid:19548747; DOI:10.1063/1.315284710.1063/1.3152847Suche in Google Scholar PubMed
[47] A.A. Mohammed, K.F. Khaled: Corros. Sci 52 (2010) 1762–1770. DOI:10.1016/j.corsci.2009.12.03310.1016/j.corsci.2009.12.033Suche in Google Scholar
[48] L. Fan, W. Meng, L. Teng, K.H. Khayat: Constr. Build. Mater. 238 (2020) 117709. DOI:10.1016/j.conbuildmat.2019.11770910.1016/j.conbuildmat.2019.117709Suche in Google Scholar
[49] C. Rahal, M. Masmoudi, R. Abdelhedi, R. Sabot, M. Jeannin, M. Bouaziz, P. Refait: J. Electroanal. Chem. 769 (2016) 53–61. DOI:10.1016/j.jelechem.2016.03.01010.1016/j.jelechem.2016.03.010Suche in Google Scholar
[50] A. Popova, S. Raicheva, E. Sokolova, M. Christov: Langmuir 12 (1996) 2083–2089. DOI:10.1021/la95014810.1021/la950148Suche in Google Scholar
[51] N. Bonanos, B. Steele, E. Butler, J.R. Macdonald, W.B. Johnson, W.L. Worrell, G.A. Niklasson, S. Malmgren, M. Strømme, S. Sundaram: Impedance Spectroscopy: Theory, Experiment, and Applications (2018) 175–478. DOI:10.1002/978111938186010.1002/9781119381860Suche in Google Scholar
[52] M.A. Amin, K. Khaled, Q. Mohsen, H. Arida: Corros. Sci. 52 (2010) 1684–1695. DOI:10.1016/j.corsci.2010.01.01910.1016/j.corsci.2010.01.019Suche in Google Scholar
[53] J.B. Bajat, V. Mišković-Stanković, N. Bibić, D. Dražić: Prog. Org. Coat. 58 (2007) 323 –330. DOI:10.1016/j.porgcoat.2007.01.01110.1016/j.porgcoat.2007.01.011Suche in Google Scholar
[54] J. Bajat, V. Mišković-Stanković, J. Popić, D. Dražić: Prog. Org. Coat. 63 (2008) 201–208. DOI:10.1016/j.porgcoat.2008.06.00210.1016/j.porgcoat.2008.06.002Suche in Google Scholar
[55] I. García, A. Conde, G. Langelaan, J. Fransaer, J.-P. Celis: Corros. Sci. 45 (2003) 1173 –1189. DOI:10.1016/S0010-938X(02)00220-210.1016/S0010-938X(02)00220-2Suche in Google Scholar
[56] X. Zhang, F. Wang, Y. Du: Surf. Coat. Technol. 201 (2007) 7241 –7245. DOI:10.1016/j.surfcoat.2007.01.04210.1016/j.surfcoat.2007.01.042Suche in Google Scholar
[57] B. Ranjith, G. Paruthimal: Appl. Surf. Sci. 257 (2010) 42 –47. DOI:10.1016/j.apsusc.2010.06.02910.1016/j.apsusc.2010.06.029Suche in Google Scholar
[58] F.A. Abed: Int. J. Adv. Res. 3 (2015) 241 –246.Suche in Google Scholar
[59] L. Sirui, J. Pengfei, Zh. Yapeng, Zh. Xiaofeng, Zh. Xuhui, T. Yuming, Z. Yu, P. Ling: Int. J. Electrochem. Sci. 13 (2018) 7688 –7695. DOI:10.20964/2018.08.1210.20964/2018.08.12Suche in Google Scholar
[60] S. Zhang, Q. Li, X. Yang, X. Zhong, Y. Dai, F. Luo: Mater. Charact. 61 (2010) 269–276. DOI:10.1016/j.matchar.2009.10.00610.1016/j.matchar.2009.10.006Suche in Google Scholar
[61] A. Sadeghi, R. Khosroshahi, Z. Sadeghian: J. Surf. Invest. 5 (2011) 186–192. DOI:10.1134/S102745101102003010.1134/S1027451011020030Suche in Google Scholar
[62] Q. Li, X. Yang, L. Zhang, J. Wang, B. Chen: J. Alloys Compd. 482 (2009) 339–344. DOI:10.1016/j.jallcom.2009.04.01410.1016/j.jallcom.2009.04.014Suche in Google Scholar
[63] B. Szczygieł, M. Kołodziej: Trans. Inst. Met. Finish. 83 (2005) 181–187. DOI:10.1179/002029605X6165810.1179/002029605X61658Suche in Google Scholar
[64] N. Padhy, S. Kamal, R. Chandra, U.K. Mudali, B. Raj: Surf. Coat. Technol. 204 (2010) 2782–2788. DOI:10.1016/j.surfcoat.2010.02.04710.1016/j.surfcoat.2010.02.047Suche in Google Scholar
[65] S. Sadreddini, A. Afshar: Appl. Surf. Sci. 303 (2014) 125–130. DOI:10.1016/j.apsusc.2014.02.10910.1016/j.apsusc.2014.02.109Suche in Google Scholar
[66] Y. Wang, Q. Zhou, K. Li, Q. Zhong, Q.B. Bui: Ceram. Int. 41 (2015) 79–84. DOI:10.1016/j.ceramint.2014.08.03410.1016/j.ceramint.2014.08.034Suche in Google Scholar
[67] X. Sun, J. Li: Tribol. Lett. 28 (2007) 223 –228. DOI:10.1007/s11249-007-9254-510.1007/s11249-007-9254-5Suche in Google Scholar
[68] B. Bozzini, C. Martini, P. Cavallotti, E. Lanzoni: Wear 225 (1999) 806–813. DOI:10.1016/S0043-1648(98)00389-510.1016/S0043-1648(98)00389-5Suche in Google Scholar
[69] K.A. Kumar, G.P. Kalaignan, V. Muralidharan: Ceram. Int. 39 (2013) 2827–2834. DOI:10.1016/j.ceramint.2012.09.05410.1016/j.ceramint.2012.09.054Suche in Google Scholar
[70] Y. Yao, S. Yao, L. Zhang, H. Wang: Mater. Lett. 61 (2007) 67–70. DOI:10.1016/j.matlet.2006.04.00710.1016/j.matlet.2006.04.007Suche in Google Scholar
[71] K. Krishnaveni, T.S. Narayanan, S. Seshadri: Mater. Chem. Phys. 99 (2006) 300–308. DOI:10.1016/j.matchemphys.2005.10.02810.1016/j.matchemphys.2005.10.028Suche in Google Scholar
[72] M. Yan, H. Ying, T. Ma: Surf. Coat. Technol. 202 (2008) 5909–5913. DOI:10.1016/j.surfcoat.2008.06.18010.1016/j.surfcoat.2008.06.180Suche in Google Scholar
[73] K.H. Hou, M.C. Jeng, M.D. Ger: Wear 262 (2007) 833–844. DOI:10.1016/j.wear.2006.08.02310.1016/j.wear.2006.08.023Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Effects of sintering temperature on the microstructural properties of Al2O3–Y2O3 powder mixtures
- Synthesis of Al/Cu core–shell particles through optimization of galvanic replacement method in alkaline solution
- Study on the synthesis and application of BaTiO3 nanospheres
- Preparation and post-treatment of silver powders for front contact pastes of silicon solar cells
- Microwave absorption properties of Zn-doped barium ferrite (BaFe12-xZnxO19) decorated reduced graphene oxide
- The effect of electroplating current density on microstructure, corrosion, and wear behavior of Ni–P–W–TiO2 coating
- Investigation on the tool worn surface morphology and machining characteristics of the Hardox steel using minimum quantity lubrication
- Optimal removal of iron impurities from kaolin by combination of Aspergillus niger & Bacillus subtilis
- Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Artikel in diesem Heft
- Contents
- Effects of sintering temperature on the microstructural properties of Al2O3–Y2O3 powder mixtures
- Synthesis of Al/Cu core–shell particles through optimization of galvanic replacement method in alkaline solution
- Study on the synthesis and application of BaTiO3 nanospheres
- Preparation and post-treatment of silver powders for front contact pastes of silicon solar cells
- Microwave absorption properties of Zn-doped barium ferrite (BaFe12-xZnxO19) decorated reduced graphene oxide
- The effect of electroplating current density on microstructure, corrosion, and wear behavior of Ni–P–W–TiO2 coating
- Investigation on the tool worn surface morphology and machining characteristics of the Hardox steel using minimum quantity lubrication
- Optimal removal of iron impurities from kaolin by combination of Aspergillus niger & Bacillus subtilis
- Review on the mechanical properties and biocompatibility of titanium implant: The role of niobium alloying element
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society