Home Microwave absorption properties of Zn-doped barium ferrite (BaFe12-xZnxO19) decorated reduced graphene oxide
Article
Licensed
Unlicensed Requires Authentication

Microwave absorption properties of Zn-doped barium ferrite (BaFe12-xZnxO19) decorated reduced graphene oxide

  • Mojtaba Moslehi Niasar , Mohammad Jafar Molaei EMAIL logo and Alireza Aghaei
Published/Copyright: June 22, 2021
Become an author with De Gruyter Brill

Abstract

Reduced graphene oxide has attracted great interest for application as microwave absorbing materials during recent years. Barium ferrite (BaFe12O19) is also a hard magnetic material with microwave absorbing properties. In this research, Zn-doped barium ferrite/reduced graphene oxide nanocomposites were synthesized and their magnetic and microwave absorption properties were studied. Phase analysis, particle morphology, magnetic properties, and microwave absorption properties were investigated by means of X-ray diffraction, field-emission scanning electron microscopy, vibrating sample magnetometry, and vector network analysis, respectively. Electron microscopy images showed that reduced graphene oxide nanosheets are decorated with barium ferrite nanoparticles. Zn-doping in the reduced graphene oxide/BaFe12-xZnxO19 (x = 0.0, 0.2, 0.4, and 0.6) nanocomposites caused an increase in the saturation magnetization from 30.76 to 32.69 emu g–1 for Zn = 0.4. Maximum reflection loss was increased from –7.39 dB to –13.50 dB by Zn doping for x = 0.4 in the nanocomposite consisting of 10 wt.% of reduced graphene oxide/BaZn0.4Fe11.6O19. The microwave absorption characteristics are discussed based on the permittivity and permeability values of the nanocomposites.


Dr. Mohammad Jafar Molaei Shahrood University of Technology Post code: 3619995161 Shahrood Iran Tel.: +98 2332392204

References

[1] Y. Li, M. Yu, P. Yang, J. Fu: Ind. Eng. Chem. Res. 56 (2017) 8872. DOI:10.1021/acs.iecr.7b0173210.1021/acs.iecr.7b01732Search in Google Scholar

[2] Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che: Adv. Mater.. 28 (2016) 486. DOI:10.1002/adma.20150314910.1002/adma.201503149Search in Google Scholar PubMed

[3] Z. Su, L. Tan, J. Tao, C. Zhang, R. Yang, F. Wen: Phys. Status Solidi B 255 (2018). 1700553. DOI:10.1002/pssb.20170055310.1002/pssb.201700553Search in Google Scholar

[4] S. Zeng, Y. Yao, W. Feng, H. Zhang, S. Peng: J. Mater. Chem. C 8 (2020) 1326. DOI:10.1039/C9TC05615G10.1039/C9TC05615GSearch in Google Scholar

[5] M. Molaei, M. Rahimipour: Mater. Chem. Phys. 167 (2015) 145. DOI:10.1016/j.matchemphys.2015.10.02210.1016/j.matchemphys.2015.10.022Search in Google Scholar

[6] I.R. Ibrahim, K.A. Matori, I. Ismail, Z. Awang, S.N.A. Rusly, R. Nazlan, F.M. Idris, M.M.M. Zulkimi, N.H. Abdullah, M.S. Mustaffa, F.N. Shafiee, M. Ertugrul: Sci. Rep. 10 (2020) 1. DOI:10.1038/s41598-020-60107-110.1038/s41598-020-60107-1Search in Google Scholar PubMed PubMed Central

[7] R. Benzerga, M. Badard, C. Mejean, A. El Assal, C. Le Paven, A. Sharaiha: J. Electron. Mater. 49 (2020) 2999. DOI:10.1007/s11664-020-07998-y10.1007/s11664-020-07998-ySearch in Google Scholar

[8] C. Liu, B. Wang, C. Mu, K. Zhai, F. Wen, J. Xiang, A. Nie, Z. Liu: J. Magn. Magn. Mater. 502 (2020) 166432. DOI:10.1016/j.jmmm.2020.16643210.1016/j.jmmm.2020.166432Search in Google Scholar

[9] P. Heidari, S. Masoudpanah: J. Alloys Compd. 834 (2020): p. 155166. DOI:10.1016/j.jallcom.2020.15516610.1016/j.jallcom.2020.155166Search in Google Scholar

[10] Z. Wu, H. Zheng, G. Zhang, Y. Deng, Z. Meng, H.U. Wahab: Mater. Chem. Phys. 244 (2020) 122648. DOI:10.1016/j.matchemphys.2020.12264810.1016/j.matchemphys.2020.122648Search in Google Scholar

[11] F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou: Composites Part B 137 (2018) 260. DOI:10.1016/j.compositesb.2017.11.02310.1016/j.compositesb.2017.11.023Search in Google Scholar

[12] H. Sözeri, Z. Mehmedi, H. Kavas, A. Baykal: Ceram. Int. 41(8) (2015) 9602. DOI:10.1016/j.ceramint.2015.04.02210.1016/j.ceramint.2015.04.022Search in Google Scholar

[13] L. Deng, Y. Zhao, Z. Xie, Z. Liu, C. Tao, R. Deng: RSC Adv. 8 (2018) 42009. DOI:10.1039/C8RA08783 K10.1039/C8RA08783KSearch in Google Scholar PubMed PubMed Central

[14] Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati: J. Magn. Magn. Mater. 397 (2016) 101. DOI:10.1016/j.jmmm.2015.08.07810.1016/j.jmmm.2015.08.078Search in Google Scholar

[15] A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd: J. Alloys Compd. 583 (2014) 325. DOI:10.1016/j.jallcom.2013.08.18810.1016/j.jallcom.2013.08.188Search in Google Scholar

[16] A. Baniasadi, A. Ghasemi, M.A. Ghadikolaei, A. Nemati, E. Paimozd: J. Mater. Sci.: Mater. Electron. 27 (2016) 1901. DOI:10.1007/s10854-015-3971-610.1007/s10854-015-3971-6Search in Google Scholar

[17] K.-K. Ji, Y. Li, M.-S. Cao: J. Mater. Sci.: Mater. Electron. 27 (2016) 5128. DOI:10.1007/s10854-016-4404-x10.1007/s10854-016-4404-xSearch in Google Scholar

[18] J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Joshi, S.R. Mishra, R. Jotania, M. Ghimire, C.C. Chauhang: Mater. Des. 110 (2016) 749. DOI:10.1016/j.matdes.2016.08.04910.1016/j.matdes.2016.08.049Search in Google Scholar

[19] P. Shen, J. Luo, Y. Zuo, Z. Yan, K. Zhang: Ceram. Int. 43(6) (2017) 4846. DOI:10.1016/j.ceramint.2016.12.10710.1016/j.ceramint.2016.12.107Search in Google Scholar

[20] A. Trukhanov, S. Trukhanov, V. Kostishyn, L. Panina, V. Korovushkin, V. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova: J. Magn. Magn. Mater. 462 (2018) 127. DOI:10.1016/j.jmmm.2018.05.00610.1016/j.jmmm.2018.05.006Search in Google Scholar

[21] P. Kaur, S. Chawla, S.B. Narang, K. Pubby: J. Magn. Magn. Mater. 422 (2017) 304. DOI:10.1016/j.jmmm.2016.08.09510.1016/j.jmmm.2016.08.095Search in Google Scholar

[22] W. Widanarto, S. Khaeriyah, S.K. Ghoshal, C. Kurniawan, M. Effendi, W.T. Cahyanto: J. Rare Earths 37 (2019) 1320. DOI:10.1016/j.jre.2019.01.00810.1016/j.jre.2019.01.008Search in Google Scholar

[23] C. Liu, G. Fang, Z. Li, Y. Zhang, X. Zhao, K. Peng, Y. Zhang, J. Zou: Mater. Lett. 244 (2019) 147. DOI:10.1016/j.matlet.2019.02.02510.1016/j.matlet.2019.02.025Search in Google Scholar

[24] A. Baykal, I˙. Ünver, U. Topal, H. Sözeri: Ceram. Int. 43 (2017) 14023. DOI:10.1016/j.ceramint.2017.07.13410.1016/j.ceramint.2017.07.134Search in Google Scholar

[25] H.-L. Xu, H. Bi, R.-B. Yang: J. Appl. Phys. 111 (2012) 07A522. DOI:10.1063/1.369152710.1063/1.3691527Search in Google Scholar

[26] J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai: Carbon 104 (2016) 214. DOI:10.1016/j.carbon.2016.04.00610.1016/j.carbon.2016.04.006Search in Google Scholar

[27] R. Shu, J. Zhang, C. Guo, Y. Wu, Z. Wan, J. Shi, Y. Liu, M. Zheng: Chem. Eng. J. 384 (2020) 123266. DOI:10.1016/j.cej.2019.12326610.1016/j.cej.2019.123266Search in Google Scholar

[28] L. Wang, H. Yu, X. Ren, G. Xu: J. Alloys Compd. 588 (2014) 212. DOI:10.1016/j.jallcom.2013.11.07210.1016/j.jallcom.2013.11.072Search in Google Scholar

[29] C. Liu, Y. Zhang, Y. Tang, Z. Wang, N. Ma, P. Du: J. Mater. Chem. C 5 (2017) 3461. DOI:10.1039/C7TC00393E10.1039/C7TC00393ESearch in Google Scholar

[30] K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, D. Kumar: RSC Adv. 8 (2018) 19600. DOI:10.1039/C8RA02455C10.1039/C8RA02455CSearch in Google Scholar

[31] R. Topkaya: J. Alloys Compd. 725 (2017) 1230. DOI:10.1016/j.jallcom.2017.07.24810.1016/j.jallcom.2017.07.248Search in Google Scholar

[32] R. Farazi, M. Vaezi, M. Molaei, M. Saeidifar, A. Behnam-Ghader: Mater. Today: Proc. 5 (2018) 15726. DOI:10.1016/j.matpr.2018.04.18410.1016/j.matpr.2018.04.184Search in Google Scholar

[33] M. Hakimi, P. Alimard, M. Yousefi: Ceram. Int. 40 (2014) 11957. DOI:10.1016/j.ceramint.2014.04.03210.1016/j.ceramint.2014.04.032Search in Google Scholar

[34] A. González-Angeles, G. Mendoza-Suarez, A. Gruskova, M. Papanova, J. Slama: Mater. Lett. 59 (2005) 26. DOI:10.1016/j.matlet.2004.09.01210.1016/j.matlet.2004.09.012Search in Google Scholar

[35] C.P.P. Wong, C.W. Lai, K.M. Lee and S.B.A. Hamid: Materials 8 (2015) 7118. DOI:10.3390/ma810536310.3390/ma8105363Search in Google Scholar

[36] O. Kubo, E. Ogawa, J. Magn. Magn. Mater. 134 (1994).) 376. DOI:10.1016/0304-8853(94)00147-210.1016/0304-8853(94)00147-2Search in Google Scholar

[37] Z. Su, L. Tan, J. Tao, C. Zhang, R. Yang, F. Wen: Phys. Status Solidi B 255 (2018) 1700553. DOI:10.1002/pssb.20170055310.1002/pssb.201700553Search in Google Scholar

[38] Z. Yang, Y. Wan, G. Xiong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo: Mater. Res. Bull. 61 (2015) 292. DOI:10.1016/j.materresbull.2014.10.00410.1016/j.materresbull.2014.10.004Search in Google Scholar

[39] T. Xia, C. Zhang, N.A. Oyler, X. Chen: J. Mater. Res. 29 (2014) 2198. DOI:10.1557/jmr.2014.22710.1557/jmr.2014.227Search in Google Scholar

[40] Y. Lai, S. Wang, D. Qian, S. Zhong, Y. Wang, S. Han, W. Jiang: Ceram. Int. 43 (2017) 12904. DOI:10.1016/j.ceramint.2017.06.18810.1016/j.ceramint.2017.06.188Search in Google Scholar

[41] C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang: Appl. Phys. Lett. 98(7) (2011) 072906. DOI:10.1063/1.355543610.1063/1.3555436Search in Google Scholar

[42] M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S. Dhawan, V. Choudhary: Phys. Chem. Chem. Phys. 17 (2015) 1610. DOI:10.1039/C4CP04284 K10.1039/C4CP04284KSearch in Google Scholar

[43] A. Ohlan, K. Singh, A. Chandra, S.K. Dhawan: ACS Appl. Mater. Interfaces 2 (2010) 927. DOI:10.1021/am900893d10.1021/am900893dSearch in Google Scholar PubMed

[44] S.B. Narang, K. Pubby, C. Singh: J. Electron. Mater. 46 (2017) 718. DOI:10.1007/s11664-016-5059-310.1007/s11664-016-5059-3Search in Google Scholar

[45] X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao, Y. Li, Y. Du: J. Mater. Chem. C 4 (2016) 1860. DOI:10.1039/C6TC00248J10.1039/C6TC00248JSearch in Google Scholar

Received: 2020-09-04
Accepted: 2021-02-25
Published Online: 2021-06-22
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8073/html
Scroll to top button