Startseite Microstructure and lattice defects in highly deformed metals by X-ray diffraction whole powder pattern modelling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and lattice defects in highly deformed metals by X-ray diffraction whole powder pattern modelling

  • P. Scardi EMAIL logo
Veröffentlicht/Copyright: 16. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Basic principles and recent developments of the Whole Powder Pattern Modelling (WPPM) approach are briefly reviewed and illustrated by a typical case study: a highly deformed metal powder (AISI 434) produced by high energy ball milling. Microstructural parameters, like crystalline domain size distribution, dislocation density, and arrangement parameters, are directly obtained by modelling the experimental pattern, without using arbitrary analytical profile functions.


P. Scardi Department of Materials Engineering and Industrial Technologies University of Trento, via Mesiano 77, 38050 Trento, Italy Tel.: +39 461 882 417 Fax: +39 461 881 977

Dedicated to Professor Dr.-Ing. habil. Dr. h. c. Heinrich Oettel on the occasion of his 65th birthday


References

[1] H.P. Klug, L.E. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York (1974).Suche in Google Scholar

[2] A.J.C. Wilson: X-ray Optics, 2nd edition, Methuen, London (1962).Suche in Google Scholar

[3] B.E. Warren, X-ray Diffraction, Addison-Wesley, Reading, MA (1969).Suche in Google Scholar

[4] R.L. Snyder, J. Fiala, H.-J. Bunge (Eds.): Defect and Microstructure Analysis by Diffraction, Oxford University Press, New York (1999).10.1093/oso/9780198501893.001.0001Suche in Google Scholar

[5] E.J. Mittemeijer, P. Scardi (Eds.): Diffraction Analysis of the Microstructure of Materials, Springer, Berlin (2004).10.1007/978-3-662-06723-9Suche in Google Scholar

[6] Y.H. Dong, P. Scardi: J. Appl. Cryst. 33 (2000) 184.10.1107/S002188989901434XSuche in Google Scholar

[7] A.X.S. Bruker: TOPAS V2.0, General profile and structure analysis software for powder diffraction data, Bruker AXS GmbH, Karlsruhe (2000).Suche in Google Scholar

[8] P. Scardi, M. Leoni, R. Delhez: J. Appl. Cryst. 37 (2004) 381.10.1107/S0021889804004583Suche in Google Scholar

[9] R.A. Young (Ed.), The Rietveld Method, Oxford University Press, Oxford (1993).10.1093/oso/9780198555773.001.0001Suche in Google Scholar

[10] J.I. Langford, in: E. Prince, J.K. Stalick (Eds.), Accuracy in Powder Diffraction II, NIST Spec. Pub. No. 846, US Dept of Commerce, Gaithersburg, MA (1992) 110.Suche in Google Scholar

[11] J.G.M. van Berkum: PhD Thesis, Technical University of Delft, Delft (1994) (ISBN 90-9007196-2).Suche in Google Scholar

[12] P. Scardi, M. Leoni, Y.H. Dong: CPD Newsletter 24 (2000) 23.10.1007/s100510070073Suche in Google Scholar

[13] P. Scardi, M. Leoni: Acta Cryst. A 57 (2001) 604.10.1107/S0108767301008881Suche in Google Scholar

[14] P. Scardi, M. Leoni: Acta Cryst. A 58 (2002) 190.10.1107/S0108767301021298Suche in Google Scholar

[15] M. Leoni, P. Scardi: J. Appl. Cryst. 37 (2004) 629.10.1107/S0021889804013366Suche in Google Scholar

[16] P. Scardi, M. Leoni, in: E.J. Mittemeijer, P. Scardi (Eds.), Diffraction Analysis of the Microstructure of Materials, Springer, Berlin (2004) 51.10.1007/978-3-662-06723-9_3Suche in Google Scholar

[17] M. Leoni, P. Scardi: ibidem, 413.Suche in Google Scholar

[18] P. Scardi, M. Leoni: CPD Newsletter 28 (2000) 8.Suche in Google Scholar

[19] J.P. Cline, R.D. Deslattes, J.-L. Staudenmann, E.G. Kessler, L.T. Hudson, A. Henins, R.W. Cheary: Certificate SRM 660a. NIST, Gaithersburg, MD (2000).Suche in Google Scholar

[20] M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds), Fundamental Aspects of Dislocation Theory, Vol. 2, Nat. Bur. Stand., (US) Spec. Publ. No 317, Washington, DC (1970) 1195.Suche in Google Scholar

[21] M. Wilkens: Phys. Stat. Sol. (a) 2 (1970) 359.10.1002/pssa.19700020224Suche in Google Scholar

[22] T. Ungar, I. Dragomir, A. Revesz, A. Borbely: J. Appl. Cryst. 32 (1999) 992.10.1107/S0021889899009334Suche in Google Scholar

[23] J. Guerriero-Paz, D. Jaramillo-Vigueras: NanoStruct. Mater. 11 (1999) 1195.10.1016/S0965-9773(99)00410-9Suche in Google Scholar

[24] C.E. Krill, R. Birringer: Phil. Mag. 77 (1998) 621.10.1080/01418619808224072Suche in Google Scholar

[25] I.J. Langford, D. Louer, P. Scardi: J. Appl. Cryst. 33 (2000) 964.10.1107/S002188980000460XSuche in Google Scholar

[26] E. Schafler, M. Zehetbauer, T. Ungar: Mat. Sci. Eng. A 319 (2001) 220.10.1016/S0921-5093(01)00979-0Suche in Google Scholar

[27] H.-J. Fetch: NanoStruct. Mater. 6 (1995) 33.10.1016/0965-9773(95)00027-5Suche in Google Scholar

  1. 1

    The IP for a well collimated diffractometer, with suitably narrow slits and a diffracted beam monochromator, is symmetrical, so the corresponding FT is a real function. As an alternative, a Fundamental Parameter Approach (FPA) can be adopted to synthesize the IP (e.g., see [7]).

Received: 2004-10-08
Accepted: 2005-04-07
Published Online: 2022-02-16

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Heinrich Oettel – 65 Jahre
  4. Articles Basic
  5. Misorientations and geometrically necessary dislocations in deformed copper crystals: A microstructural analysis of X-ray rocking curves
  6. Microstructure and lattice defects in highly deformed metals by X-ray diffraction whole powder pattern modelling
  7. Magnetoplasticity
  8. Articles Applied
  9. Finite-element analysis of the hot-pressing consolidation of continuous Al2O3 fibers-reinforced NiAl composites
  10. Modelling the stress state of a thermal barrier coating system at high temperatures
  11. Impedance spectroscopy of thermal barrier coatings as non-destructive evaluation tool for failure detection
  12. Diffraction by image processing and its application in materials science
  13. On the preferred orientation in Ti1–xAlxN and Ti1–xyAlxSiyN thin films
  14. Boron segregation and creep in ultra-fine grained tempered martensite ferritic steels
  15. Numeric simulation of the α/γ-phase ratio of ferritic-austenitic duplex steels
  16. Deformation behaviour and microscopic investigations of cyclically loaded railway wheels and tyres
  17. Similarity considerations on the simulation of turning processes of steels
  18. Crack-tip residual stresses and crack propagation in cyclically-loaded specimens under different loading modes
  19. On the effect of oxide scale stability on the internal nitridation process in high-temperature alloys
  20. Nitriding behaviour of the intermetallic alloy FeAl
  21. Material-related fundamentals of cutting techniques for GaAs wafer manufacturing
  22. Determination of RuAl phase boundaries in binary Ru–Al phase diagram at room temperature and 1200 °C
  23. On the Orowan stress in intermetallic ODS alloys and its superposition with grain size and solid solution hardening
  24. Effects of particle reinforcement on creep behaviour of AlSi1MgCu
  25. Effect of preaging on the precipitation behaviour of AlMgSi1
  26. Corrosion behaviour of hard coatings on Mg substrates
  27. Phase transformations in creep resistant MgYNdScMn alloy
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. Press/Presse
  31. Conferences
Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0123/html
Button zum nach oben scrollen