Abstract
The influence of osmotic pretreatment on nectarines with solutions of glucose syrup and sorbitol and subsequent dehydration at different temperatures (60 °C, 70 °C, or 80 °C) was evaluated. The kinetics of moisture loss during drying was obtained and mathematical models were adjusted to estimate the kinetic parameters. Effective diffusion coefficients were calculated using Fick’s second law. All drying kinetics exhibited only a falling-rate period during hot-air drying owing to moisture loss in the osmotic pretreatment. Moisture loss was favoured by the use of sorbitol, whereas the diffusivity of water increased when glucose was used as an osmotic agent. Logarithmic and Midilli et al. models best described the changes in moisture over time, whereas Fick’s second law estimated water diffusion coefficient values between 4.96×10−9 and 2.43×10−8 m2 s−1. These models may be employed to predict the optimum conditions for osmo-dehydrating nectarines under hot-air drying at the industrial level.
References
1. FranklinM, BuSY, LernerMR, LancasterEA, BellmerD, MarlowD, et al. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone2006;39:1331–42.10.1016/j.bone.2006.05.024Suche in Google Scholar PubMed
2. TarhanS. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying air temperatures. J Food Eng2007;79:255–60.10.1016/j.jfoodeng.2006.01.052Suche in Google Scholar
3. GoncalvesB, SilvaAP, Moutinho PereiraJ, BacelarE, RosaE, MeyerAS. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries(Prunus avium L.). Food Chem2007;103:976–84.10.1016/j.foodchem.2006.08.039Suche in Google Scholar
4. De MichelisA, PironeBN, VullioudMB, OchoaMR, KesselerAG, Márquez CA Cambios de volumen, área superficial y factor de forma de heywood durante la deshidratación de cerezas(Prunus avium). Ciênc Tecnol Aliment Campinas2008;28:317–21.10.1590/S0101-20612008000200008Suche in Google Scholar
5. GilMI, Tomas BarberanFA, Hess-PierceB, KaderAA. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem2002;50:4976–82.10.1021/jf020136bSuche in Google Scholar PubMed
6. KhoyiMR, HesariJ. Osmotic dehydration kinetics of apricot using sucrose solution. J Food Eng2007;78:1355–60.10.1016/j.jfoodeng.2006.01.007Suche in Google Scholar
7. IspirA, TogrulIT. Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chem Eng Res Design2009;87:166–80.10.1016/j.cherd.2008.07.011Suche in Google Scholar
8. AraujoEA, RibeiroSC, Moreira AzoubelPM, MurrFE. Drying kinetics of nectarine (Prunus persica) with and without shrinkage. In: Proceedings of the 14th International Drying Symposium (IDS 2004), 22–25 August 2004, São Paulo, Brazil, C, 2189–94.Suche in Google Scholar
9. PavkovI, BabićLJ, BabićM, RadojčinM, StojanovićČ. Effects of osmotic pre-treatment on convective drying kinetics of nectarines halves(Pyrus persica L). J Process Energy Agric2011;15:217–22.Suche in Google Scholar
10. RodríguezMM, ArballoJR, CampañoneLA, CocconiMB, PaganoAM, MascheroniRH. Osmotic dehydration of nectarines: influence of the operating conditions and determination of the effective diffusion coefficients. Food Bioprocess Technol2013;6:2708–20.10.1007/s11947-012-0957-8Suche in Google Scholar
11. MengesHO, ErtekinC. Mathematical modelling of thin layer drying of golden apples. J Food Eng2006;77:119–25.10.1016/j.jfoodeng.2005.06.049Suche in Google Scholar
12. SacilikK, ElicinAK. The thin layer drying characteristics of organic apple slices. J Food Eng2006;73:281–9.10.1016/j.jfoodeng.2005.03.024Suche in Google Scholar
13. VegaA, FitoP, AndrésA, LemusR. Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). J Food Eng2007;79:1460–6.10.1016/j.jfoodeng.2006.04.028Suche in Google Scholar
14. TogrulIT. Modelling of heat and moisture transport during drying black grapes. Int J Food Sci Technol2010;45:1146–52.10.1111/j.1365-2621.2010.02246.xSuche in Google Scholar
15. TreybalRE. Operaciones de transferencia de masa, Cap. 12 Secado. Universidad de Rhode Island, México, 2da ed.: McGrawHill, 1995.Suche in Google Scholar
16. GeankoplisCJ. Procesos de transporte y operaciones unitarias, Cap. 9 Secado de materiales de proceso, Universidad de Minnesota, México, 3ra ed., Compañía Editorial Continental, S. A. de C. V. México 1998.Suche in Google Scholar
17. Van ArselWB, CopleyMJ, MorganAI. Food dehydration, 2nd ed, vol. 1. Westport: Principles, AVI, 1973.Suche in Google Scholar
18. SanjuánN, LozanoM, García-PascualP, MuletA. Dehydration kinetics of red pepper (Capsicum annuum L var jaranda). J Sci Food Agric2003;83:697–701.10.1002/jsfa.1334Suche in Google Scholar
19. ÜretirG, ÖzilgenM, KatnasS. Effects of velocity and temperature of air on the drying rate constants of apple cubes. J Food Eng1996;30:339–50.10.1016/S0260-8774(96)00056-8Suche in Google Scholar
20. SimalS, DeyáE, FrauM, RosellóC. Simple modelling of air drying curves of fresh and osmotically pre-dehydrated apples cubes. J Food Eng1997;33:139–50.10.1016/S0260-8774(97)00049-6Suche in Google Scholar
21. FitoP, AndrésAM, BaratJM, AlborsAM. Introducción al secado de alimentos por aire caliente. España, Ed. Universidad Politécnica de Valencia, 2001.Suche in Google Scholar
22. KeqingDX. Optimización del secado por aire caliente de pera (Variedad Blanquilla). Tesis doctoral, Universidad Politécnica de Valencia, España, 2004.Suche in Google Scholar
23. CurcioSA. Multiphase model to analyze transport phenomena in food drying processes. Drying Technol2010;28:773–85.10.1080/07373937.2010.482697Suche in Google Scholar
24. ChuaKJ, MujumdarAS, HawladerMN, ChouSK, HoJC. Batch drying of banana pieces-effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Res Int2001;34:721–31.10.1016/S0963-9969(01)00094-1Suche in Google Scholar
25. DandamrongrakR, YoungG, MasonR. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. J Food Eng2002;55:139–46.10.1016/S0260-8774(02)00028-6Suche in Google Scholar
26. FernandesFA, RodriguesS, GasparetoOC, OliveiraEL. Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng2006;77:188–93.10.1016/j.jfoodeng.2005.05.058Suche in Google Scholar
27 RivaM, CampolongoS, LevaAA, MaestrelliA, TorreggianiD. Structure–property relationships in osmo-air-dehydrated apricot cubes. Food Res Int2008;38:533–42.10.1016/j.foodres.2004.10.018Suche in Google Scholar
28. MudaharGS, BuhrRJ, JenJJ. Infiltrated biopolymers effect on quality of dehydrated carrots. J Food Sci1991;57:526–9.10.1111/j.1365-2621.1992.tb05533.xSuche in Google Scholar
29. OzenBF, DockLL, OzdemirM, FlorosJD. Processing factors affecting the osmotic dehydration of diced green peppers. Int J Food Sci Technol2002;37:497–502.10.1046/j.1365-2621.2002.00606.xSuche in Google Scholar
30. Quintero-ChávezR, Quintero-RamosA, Jiménez-CastroJ, BarnardJ, Márquez-MeléndezR, Zazueta-MoralesJ, et al. Modeling of total soluble solid and NaCl uptake during osmotic treatment of bell peppers under different infusion pressures. Food Bioprocess Technol2012;5:184–92.10.1007/s11947-010-0358-9Suche in Google Scholar
31. MandalaIG, AnagnostarasEF, OikonomouCK. Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics. J Food Eng2005;69:307–16.10.1016/j.jfoodeng.2004.08.021Suche in Google Scholar
32. SimalS, FemeniaA, GarauMC, RosellóC. Use of exponential models to simulate the drying kinetics of kiwi fruit. J Food Eng2005;66:323–8.10.1016/j.jfoodeng.2004.03.025Suche in Google Scholar
33. RodriguesS, FernandesFAN. Osmotic dehydration of melon in a ternary system followed by air drying. In 15th International Drying Symposium (IDS 2006), Budapest, Hungary, 20–23 August 2006.Suche in Google Scholar
34. LombardGE, OliveiraJC, FitoP, AndrésA. Osmotic dehydration of pineapple as a pre-treatment for further drying. J Food Eng2008;85:277–84.10.1016/j.jfoodeng.2007.07.009Suche in Google Scholar
35. KaletaA, GórnickiK. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int J Food Sci Technol2010;45:891–8.10.1111/j.1365-2621.2010.02230.xSuche in Google Scholar
36. MonneratSM, PizziRM, MauroTMA, MenegalliFC. Osmotic dehydration of apples in sugar/salt solutions: concentration profiles and effective diffusion coefficients. J Food Eng2010;100:604–12.10.1016/j.jfoodeng.2010.05.008Suche in Google Scholar
37. WangZ, SunJ, LiaoX, ChenF, ZhaoG, WuJ, et al. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res Int2007;40:39–46.10.1016/j.foodres.2006.07.017Suche in Google Scholar
38. SanderA, Prlíc KardumJ, GlasnovícA. Drying of solids: estimation of the mathematical model parameter. Can J Chem Eng2010;88:822–9.10.1002/cjce.20346Suche in Google Scholar
39. CrankJ. The mathematics of diffusion, 2nd ed. Oxford: Oxford University Press, 1975:47–9.Suche in Google Scholar
40. AkbulutA, DurmusA. Thin layer solar drying and mathematical modeling of mulberry. Int J Energy Res2009;33:687–95.10.1002/er.1504Suche in Google Scholar
41. AOAC. Official methods of analysis. Washington, DC: Association of Official Analytical Chemists, 1980.Suche in Google Scholar
42. Barbosa-CánovasGV, Vega-MercadoH. Deshidratación de Alimentos. Zaragoza, España: Ed. ACRIBIA S.A., 2000.Suche in Google Scholar
43. CheftelJC, CheftelH. Introducción a la bioquímica y tecnología de los alimentos. Zaragoza, España: Ed. ACRIBIA S.A, 1992.Suche in Google Scholar
44. MazzaG, LemaguerM. Dehydration of onion: some theoretical and practical considerations. J Food Technol1980;15:181–94.10.1111/j.1365-2621.1980.tb00930.xSuche in Google Scholar
45. McMinnWA, McLoughlinCM, MageeTR. Thin-layer modeling of microwave, microwave-connective and microwave-vacuum drying of pharmaceutical powders. Drying Technol2005;23:513–32.10.1081/DRT-200054126Suche in Google Scholar
46. GhazanfariA, EmamiS, TabilLG, PanigrahiS. Thin-layer drying of flax fiber: II. Modeling drying process using semi-theoretical and empirical models. Drying Technol2006;24:1637–42.10.1080/07373930601031463Suche in Google Scholar
47. LópezR, De ItaA, VacaM. Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Convers Manage2009;50:2119–26.10.1016/j.enconman.2009.04.014Suche in Google Scholar
48. YaldizO, ErtekinC. Thin-layer solar drying of some vegetables. Drying Technol2001;19:583–97.10.1081/DRT-100103936Suche in Google Scholar
49. MidilliA, KucukH, YaparZ. A new model for single-layer drying. Drying Technol2002;20:1503–13.10.1081/DRT-120005864Suche in Google Scholar
50. WilkinsonL. SYSTAT: The System for Statistics: Statistics, Evanston: SYSTAT 2007, Inc. version No. 12.02.00, 1990.Suche in Google Scholar
51. DoymazI. Effect of dipping treatment on air drying of plums. J Food Eng2004;64:465–70.10.1016/j.jfoodeng.2003.11.013Suche in Google Scholar
52. Di RienzoJA, CasanovesF, BalzariniMG, GonzalezL, TabladaM, RobledoCW. InfoStat, versión 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Suche in Google Scholar
53. FerrariCC, ArballoJR, MascheroniRH. Mass transfer and texture variation during osmotic dehydration of pears. In: Proceedings of 4th Inter-American Drying Conference, 2009; IV-17:610–616.Suche in Google Scholar
54. Raoult-WackAL, GuilbertS, Le MaguerM, RíosG. Simultaneous water and solute transport in shrinking media –part 1. Application to dewatering and impregnation soaking process analysis (osmotic dehydration). Drying Technol1991;9:589–612.10.1080/07373939108916698Suche in Google Scholar
55. CháferM, González-MartínezC, OrtoláMD, ChiraltA, FitoP. Kinetics of osmotic dehydration in orange and mandarin peels. J Food Process Eng2001;24:273–89.10.1111/j.1745-4530.2001.tb00544.xSuche in Google Scholar
56. Emam-DjomehZ, DjelvehG, GrosJB. Osmotic dehydration of foods in a multicomponent solution parte I. Lowering of solute uptake in agar gel: diffusion considerations. Food Sci Technol2001;34:312–18.10.1006/fstl.2001.0776Suche in Google Scholar
57. Moreira AzoubelP, MurrFE. Mass transfer kinetics of osmotic dehydration of cherry tomato. J Food Eng2004;61:291–5.10.1016/S0260-8774(03)00132-8Suche in Google Scholar
58. AntonioGC, KurozawaLE, Xidieh MurrFE, ParkKJ. Otimização da desidratação osmótica de batata doce (Ipomoea batatas) utilizando metodologia de superfície de resposta. Braz J Food Technol2006;9:135–41.Suche in Google Scholar
59. BorinI, FrascareliEC, MauroMA, KimuraM. Efeito do prétratamento osmótico com sacarose e cloreto de sódio sobre a secagem convectiva de abóbora. Ciênc Tecnol Aliment2008;28:39–50.10.1590/S0101-20612008000100008Suche in Google Scholar
60. AkpinarEK, BicerY, YildizC. Thin layer drying of red pepper. J Food Eng2003;59:99–104.10.1016/S0260-8774(02)00425-9Suche in Google Scholar
61. AkpinarEK, SarsılmazC, YildizC. Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. Int J Energy Res2004;28:739–52.10.1002/er.997Suche in Google Scholar
62. LahsasniS, KouhilaM, MahrouzM, Ait MohamedL, AgorramB. Characteristic drying curve and mathematical modeling of thin layer solar drying of prickly pear cladode (Opuntia ficus indica). J Food Process Eng2004;27:103–17.10.1111/j.1745-4530.2004.tb00625.xSuche in Google Scholar
63. BaratJM, ChiraltA, FitoP. Effect of osmotic solution concentration, temperature and vacuum impregnation pretreatment on osmotic dehydration kinetics of apple slices. Food Sci Technol Int2001;7:451–6.10.1177/108201301772660529Suche in Google Scholar
64. SenadeeraW, BhandariBR, YoungG, WijesingheB. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. J Food Eng2003;58:277–83.10.1016/S0260-8774(02)00386-2Suche in Google Scholar
65. SankatCK, CastaigneF. Foaming and drying behaviour of ripe bananas. Lebensmittel-Wissenschaft Und-Technologie2004;37:17–525.10.1016/S0023-6438(03)00132-4Suche in Google Scholar
66. DoymazI. Drying characteristics and kinetics of okra. J Food Eng2005;69:275–9.10.1016/j.jfoodeng.2004.08.019Suche in Google Scholar
67. RivaM, CampolongoS, LevaAA, MaestrelliA, TorreggianiD. Structure-property relationships in osmo-air-dehydrated apricot cubes. Food Res Int2005;38:533–42.10.1016/j.foodres.2004.10.018Suche in Google Scholar
68. WangJ, XiYS. Drying characteristics and drying quality of carrot using a two-stage microwave process. J Food Eng2005;68:505–11.10.1016/j.jfoodeng.2004.06.027Suche in Google Scholar
69. MaskanA, KayaS, MaskanM. Hot air and sun drying of grape leather (pestil). J Food Eng2002;54:81–8.10.1016/S0260-8774(01)00188-1Suche in Google Scholar
70. AkpinarE, MidilliA, BicerY. Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers Manage2003;44:1689–705.10.1016/S0196-8904(02)00171-1Suche in Google Scholar
71. VelicD, PlaninicM, TomasS, BelicM. Influence of airflow velocity on kinetics of convection apple drying. J Food Eng2004;64:97–102.10.1016/j.jfoodeng.2003.09.016Suche in Google Scholar
72. RayaguruK, RoutrayW, MohantySN. Mathematical modeling and quality parameters of air-dried betel leaf (Piper beatle L). J Food Process Preserv2010;35:272–9.10.1111/j.1745-4549.2010.00480.xSuche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Influence of Reduced Cleaning-In-Place on Aged Membranes during Ultrafiltration of Whey
- Particle Size Distribution of Food Boluses and Validation of Simulation During Artificial Indenter Crushing
- Trans-free Shortenings through the Interesterification of Rice Bran Stearin, Fully Hydrogenated Soybean Oil and Coconut Oil
- Ultrasound-Assisted Aqueous Extraction of Oil and Carotenoids from Microwave-Dried Gac (Momordica cochinchinensis Spreng) Aril
- The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives
- Osmotic Dehydration of Tomato Assisted by Ultrasound: Evaluation of the Liquid Media on Mass Transfer and Product Quality
- Production and Thermal Characterization of an Alkaline Pectin Lyase from Penicillium notatum
- Investigating the Effects of Current and Wave Form of Electrical Pre-treatments on the Yield and Quality of Tomato Juice
- Mathematical Modeling of Hot-Air Drying of Osmo-dehydrated Nectarines
- Effect of Soaking Temperature and Steaming Time on the Quality of Parboiled Iranian Paddy Rice
- A Comprehensive Study on the Effect of Maltitol and Oligofructose as Alternative Sweeteners in Sponge Cakes
- Effect of Gamma Irradiation on Physicochemical Properties of Brown Rice
- Comparison of Moisture Sorption Isotherms and Quality Characteristics of Freeze-Dried and Boiled-Dried Abalone
- Boosting the Food Functionality (In Vivo and In Vitro) of Spirulina by Gamma Radiation: An Inspiring Approach
Artikel in diesem Heft
- Frontmatter
- Influence of Reduced Cleaning-In-Place on Aged Membranes during Ultrafiltration of Whey
- Particle Size Distribution of Food Boluses and Validation of Simulation During Artificial Indenter Crushing
- Trans-free Shortenings through the Interesterification of Rice Bran Stearin, Fully Hydrogenated Soybean Oil and Coconut Oil
- Ultrasound-Assisted Aqueous Extraction of Oil and Carotenoids from Microwave-Dried Gac (Momordica cochinchinensis Spreng) Aril
- The Rheology and Physical Properties of Fermented Probiotic Ice Creams Made with Dairy Alternatives
- Osmotic Dehydration of Tomato Assisted by Ultrasound: Evaluation of the Liquid Media on Mass Transfer and Product Quality
- Production and Thermal Characterization of an Alkaline Pectin Lyase from Penicillium notatum
- Investigating the Effects of Current and Wave Form of Electrical Pre-treatments on the Yield and Quality of Tomato Juice
- Mathematical Modeling of Hot-Air Drying of Osmo-dehydrated Nectarines
- Effect of Soaking Temperature and Steaming Time on the Quality of Parboiled Iranian Paddy Rice
- A Comprehensive Study on the Effect of Maltitol and Oligofructose as Alternative Sweeteners in Sponge Cakes
- Effect of Gamma Irradiation on Physicochemical Properties of Brown Rice
- Comparison of Moisture Sorption Isotherms and Quality Characteristics of Freeze-Dried and Boiled-Dried Abalone
- Boosting the Food Functionality (In Vivo and In Vitro) of Spirulina by Gamma Radiation: An Inspiring Approach