Startseite Lebenswissenschaften New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals

  • Dennis J. Stuehr EMAIL logo , Yue Dai , Pranjal Biswas ORCID logo , Elizabeth A. Sweeny und Arnab Ghosh
Veröffentlicht/Copyright: 26. September 2022

Abstract

The intracellular trafficking of mitochondrial heme presents a fundamental challenge to animal cells. This article provides some background on heme allocation, discusses some of the concepts, and then reviews research done over the last decade, much in the author’s laboratory, that is uncovering unexpected and important roles for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), heat shock protein 90 (hsp90), and nitric oxide (NO) in enabling and regulating the allocation of mitochondrial heme to hemeproteins that mature and function outside of the mitochondria. A model for how hemeprotein functions can be regulated in cells through the coordinate participation of GAPDH, hsp90, and NO in allocating cellular heme is presented.


Corresponding author: Dennis J. Stuehr, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA, E-mail:

Funding source: National Institute of Health Grants – Programme Grants for Applied Research

Award Identifier / Grant number: K99 HL144921

Award Identifier / Grant number: P01 HL081064

Award Identifier / Grant number: R01 GM130624

Award Identifier / Grant number: R01 HL150049

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by National Institute of Health Grants – Programme Grants for Applied Research – R01 GM130624 and P01 HL081064 (D.J.S.), R01 HL150049 (A.G.), and K99 HL144921 (E.A.S.).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abraham, N.G., Quan, S., Mieyal, P.A., Yang, L., Burke-Wolin, T., Mingone, C.J., Goodman, A.I., Nasjletti, A., and Wolin, M.S. (2002). Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 283: L1117–L1124, https://doi.org/10.1152/ajplung.00365.2001.Suche in Google Scholar PubMed

Aitken, A.E., Lee, C.M., and Morgan, E.T. (2008). Roles of nitric oxide in inflammatory downregulation of human cytochromes P450. Free Radic. Biol. Med. 44: 1161–1168, https://doi.org/10.1016/j.freeradbiomed.2007.12.010.Suche in Google Scholar PubMed PubMed Central

Albakri, Q.A. and Stuehr, D.J. (1996). Intracellular assembly of inducible NO synthase is limited by nitric oxide-mediated changes in heme insertion and availability. J. Biol. Chem. 271: 5414–5421, https://doi.org/10.1074/jbc.271.10.5414.Suche in Google Scholar PubMed

Badawy, A.A. (2017). Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res. 10: 1178646917691938.10.1177/1178646917691938Suche in Google Scholar PubMed PubMed Central

Baker, J.D., Ozsan, I., Rodriguez Ospina, S., Gulick, D., and Blair, L.J. (2019). Hsp90 heterocomplexes regulate steroid hormone receptors: from stress response to psychiatric disease. Int. J. Mol. Sci. 20: 79, doi:https://doi.org/10.3390/ijms20010079.Suche in Google Scholar PubMed PubMed Central

Bender, A.T., Silverstein, A.M., Demady, D.R., Kanelakis, K.C., Noguchi, S., Pratt, W.B., and Osawa, Y. (1999). Neuronal nitric-oxide synthase is regulated by the Hsp90-based chaperone system in vivo. J. Biol. Chem. 274: 1472–1478, https://doi.org/10.1074/jbc.274.3.1472.Suche in Google Scholar PubMed

Biebl, M.M. and Buchner, J. (2019). Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb. Perspect. Biol. 11: a034017, doi:https://doi.org/10.1101/cshperspect.a034017.Suche in Google Scholar PubMed PubMed Central

Bissell, D.M. and Hammaker, L.E. (1977). Effect of endotoxin on tryptophan pyrrolase and delta-aminolaevulinate synthase: evidence for an endogenous regulatory haem fraction in rat liver. Biochem. J. 166: 301–304, https://doi.org/10.1042/bj1660301.Suche in Google Scholar PubMed PubMed Central

Biswas, P., Dai, Y., and Stuehr, D.J. (2022). Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic. Biol. Med. 180: 179–190, https://doi.org/10.1016/j.freeradbiomed.2022.01.008.Suche in Google Scholar PubMed

Boon, E.M. and Marletta, M.A. (2005). Ligand specificity of H-NOX domains: from sGC to bacterial NO sensors. J. Inorg. Biochem. 99: 892–902, https://doi.org/10.1016/j.jinorgbio.2004.12.016.Suche in Google Scholar PubMed

Chakravarti, R., Aulak, K.S., Fox, P.L., and Stuehr, D.J. (2010). GAPDH regulates cellular heme insertion into inducible nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 107: 18004–18009, https://doi.org/10.1073/pnas.1008133107.Suche in Google Scholar PubMed PubMed Central

Chakravarti, R. and Stuehr, D.J. (2012). Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 287: 16179–16186, https://doi.org/10.1074/jbc.m112.342758.Suche in Google Scholar PubMed PubMed Central

Chiabrando, D., Vinchi, F., Fiorito, V., Mercurio, S., and Tolosano, E. (2014). Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharmacol. 5: 61, https://doi.org/10.3389/fphar.2014.00061.Suche in Google Scholar PubMed PubMed Central

Dai, Y., Faul, E.M., Ghosh, A., and Stuehr, D.J. (2022). NO rapidly mobilizes cellular heme to trigger assembly of its own receptor. Proc. Natl. Acad. Sci. U.S.A. 119: e2115774119, doi:https://doi.org/10.1073/pnas.2115774119.Suche in Google Scholar PubMed PubMed Central

Dai, Y., Fleischhacker, A.S., Liu, L., Fayad, S., Gunawan, A.L., Stuehr, D.J., and Ragsdale, S.W. (2022). Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase. Biol. Chem. 403: 1043–105310.1515/hsz-2022-0230Suche in Google Scholar PubMed PubMed Central

Dai, Y., Schlanger, S., Haque, M.M., Misra, S., and Stuehr, D.J. (2019). Heat shock protein 90 regulates soluble guanylyl cyclase maturation by a dual mechanism. J. Biol. Chem. 294: 12880–12891, https://doi.org/10.1074/jbc.ra119.009016.Suche in Google Scholar PubMed PubMed Central

Dai, Y. and Stuehr, D.J. (2022). Inactivation of soluble guanylyl cyclase in living cells proceeds without loss of haem and involves heterodimer dissociation as a common step. Br. J. Pharmacol. 179: 2505–2518, https://doi.org/10.1111/bph.15527.Suche in Google Scholar PubMed PubMed Central

Dai, Y., Sweeny, E.A., Schlanger, S., Ghosh, A., and Stuehr, D.J. (2020). GAPDH delivers heme to soluble guanylyl cyclase. J. Biol. Chem. 295: 8145–8154, https://doi.org/10.1074/jbc.ra120.013802.Suche in Google Scholar

Dao, V.T., Elbatreek, M.H., Deile, M., Nedvetsky, P.I., Guldner, A., Ibarra-Alvarado, C., Godecke, A., and Schmidt, H. (2020). Non-canonical chemical feedback self-limits nitric oxide-cyclic GMP signaling in health and disease. Sci. Rep. 10: 10012, https://doi.org/10.1038/s41598-020-66639-w.Suche in Google Scholar PubMed PubMed Central

De Simone, G., Ascenzi, P., Di Masi, A., and Polticelli, F. (2017). Nitrophorins and nitrobindins: structure and function. Biomol. Concepts 8: 105–118, https://doi.org/10.1515/bmc-2017-0013.Suche in Google Scholar PubMed

Deredge, D.J., Huang, W., Hui, C., Matsumura, H., Yue, Z., Moenne-Loccoz, P., Shen, J., Wintrode, P.L., and Wilks, A. (2017). Ligand-induced allostery in the interaction of the Pseudomonas aeruginosa heme binding protein with heme oxygenase. Proc. Natl. Acad. Sci. U.S.A. 114: 3421–3426, https://doi.org/10.1073/pnas.1606931114.Suche in Google Scholar PubMed PubMed Central

Desuzinges-Mandon, E., Arnaud, O., Martinez, L., Huche, F., Di Pietro, A., and Falson, P. (2010). ABCG2 transports and transfers heme to albumin through its large extracellular loop. J. Biol. Chem. 285: 33123–33133, https://doi.org/10.1074/jbc.m110.139170.Suche in Google Scholar

Doty, R.T., Sanchez-Bonilla, M., Keel, S.B., and Abkowitz, J.L. (2013). FLVCR1a but not FLVCR1b is required for effective erythropoiesis in adult mice. Blood 122: 308, https://doi.org/10.1182/blood.v122.21.308.308.Suche in Google Scholar

Dutra, F.F. and Bozza, M.T. (2014). Heme on innate immunity and inflammation. Front. Pharmacol. 5: 115, https://doi.org/10.3389/fphar.2014.00115.Suche in Google Scholar PubMed PubMed Central

Fernhoff, N.B., Derbyshire, E.R., Underbakke, E.S., and Marletta, M.A. (2012). Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide. J. Biol. Chem. 287: 43053–43062, https://doi.org/10.1074/jbc.m112.393892.Suche in Google Scholar

Fleischhacker, A.S., Sarkar, A., Liu, L., and Ragsdale, S.W. (2022). Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit. Rev. Biochem. Mol. Biol. 57: 16–47, https://doi.org/10.1080/10409238.2021.1961674.Suche in Google Scholar PubMed PubMed Central

Funes, S.C., Rios, M., Fernandez-Fierro, A., Covian, C., Bueno, S.M., Riedel, C.A., Mackern-Oberti, J.P., and Kalergis, A.M. (2020). Naturally derived heme-oxygenase 1 inducers and their therapeutic application to immune-mediated diseases. Front. Immunol. 11: 1467, https://doi.org/10.3389/fimmu.2020.01467.Suche in Google Scholar PubMed PubMed Central

Gallio, A.E., Fung, S.S., Cammack-Najera, A., Hudson, A.J., and Raven, E.L. (2021). Understanding the logistics for the distribution of heme in cells. J. Am. Chem. Soc. Au. 1: 1541–1555, https://doi.org/10.1021/jacsau.1c00288.Suche in Google Scholar PubMed PubMed Central

Galmozzi, A., Kok, B.P., Kim, A.S., Montenegro-Burke, J.R., Lee, J.Y., Spreafico, R., Mosure, S., Albert, V., Cintron-Colon, R., Godio, C., et al.. (2019). PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 576: 138–142, https://doi.org/10.1038/s41586-019-1774-2.Suche in Google Scholar PubMed PubMed Central

Ghosh, A., Chawla-Sarkar, M., and Stuehr, D.J. (2011). Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J. 25: 2049–2060, https://doi.org/10.1096/fj.10-180554.Suche in Google Scholar PubMed PubMed Central

Ghosh, A., Dai, Y., Biswas, P., and Stuehr, D.J. (2019). Myoglobin maturation is driven by the hsp90 chaperone machinery and by soluble guanylyl cyclase. FASEB J. 33: 9885–9896, https://doi.org/10.1096/fj.201802793rr.Suche in Google Scholar PubMed PubMed Central

Ghosh, A., Garee, G., Sweeny, E.A., Nakamura, Y., and Stuehr, D.J. (2018). Hsp90 chaperones hemoglobin maturation in erythroid and nonerythroid cells. Proc. Natl. Acad. Sci. U.S.A. 115: E1117–E1126, https://doi.org/10.1073/pnas.1717993115.Suche in Google Scholar PubMed PubMed Central

Ghosh, A., Koziol-White, C.J., Asosingh, K., Cheng, G., Ruple, L., Groneberg, D., Friebe, A., Comhair, S.A., Stasch, J.P., Panettieri, R.A.Jr., et al.. (2016). Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc. Natl. Acad. Sci. U.S.A. 113: E2355–E2362, https://doi.org/10.1073/pnas.1524398113.Suche in Google Scholar PubMed PubMed Central

Ghosh, A., Stasch, J.P., Papapetropoulos, A., and Stuehr, D.J. (2014). Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J. Biol. Chem. 289: 15259–15271, https://doi.org/10.1074/jbc.m114.559393.Suche in Google Scholar PubMed PubMed Central

Ghosh, A. and Stuehr, D.J. (2012). Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme. Proc. Natl. Acad. Sci. U.S.A. 109: 12998–13003, https://doi.org/10.1073/pnas.1205854109.Suche in Google Scholar PubMed PubMed Central

Giuffre, A., Sarti, P., D’itri, E., Buse, G., Soulimane, T., and Brunori, M. (1996). On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J. Biol. Chem. 271: 33404–33408, https://doi.org/10.1074/jbc.271.52.33404.Suche in Google Scholar PubMed

Greengard, O. and Feigelson, P. (1961). The activation and induction of rat liver tryptophan pyrrolase in vivo by its substrate. J. Biol. Chem. 236: 158–161, https://doi.org/10.1016/s0021-9258(18)64446-1.Suche in Google Scholar

Hanna, D.A., Harvey, R.M., Martinez-Guzman, O., Yuan, X., Chandrasekharan, B., Raju, G., Outten, F.W., Hamza, I., and Reddi, A.R. (2016). Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc. Natl. Acad. Sci. U.S.A. 113: 7539–7544, https://doi.org/10.1073/pnas.1523802113.Suche in Google Scholar PubMed PubMed Central

Hannibal, L., Collins, D., Brassard, J., Chakravarti, R., Vempati, R., Dorlet, P., Santolini, J., Dawson, J.H., and Stuehr, D.J. (2012). Heme binding properties of glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 51: 8514–8529, https://doi.org/10.1021/bi300863a.Suche in Google Scholar PubMed PubMed Central

Hon, T., Hach, A., Tamalis, D., Zhu, Y., and Zhang, L. (1999). The yeast heme-responsive transcriptional activator Hap1 is a preexisting dimer in the absence of heme. J. Biol. Chem. 274: 22770–22774, https://doi.org/10.1074/jbc.274.32.22770.Suche in Google Scholar PubMed

Huang, Y., Zhang, P., Yang, Z., Wang, P., Li, H., and Gao, Z. (2017). Interaction of glyceraldehyde-3-phosphate dehydrogenase and heme: the relevance of its biological function. Arch. Biochem. Biophys. 619: 54–61, https://doi.org/10.1016/j.abb.2017.03.005.Suche in Google Scholar PubMed

Hvidberg, V., Maniecki, M.B., Jacobsen, C., Hojrup, P., Moller, H.J., and Moestrup, S.K. (2005). Identification of the receptor scavenging hemopexin-heme complexes. Blood 106: 2572–2579, https://doi.org/10.1182/blood-2005-03-1185.Suche in Google Scholar PubMed

Immenschuh, S., Vijayan, V., Janciauskiene, S., and Gueler, F. (2017). Heme as a target for therapeutic interventions. Front. Pharmacol. 8: 146, https://doi.org/10.3389/fphar.2017.00146.Suche in Google Scholar PubMed PubMed Central

Jackson, S.E. (2013). Hsp90: structure and function. Top. Curr. Chem. 328: 155–240.10.1007/128_2012_356Suche in Google Scholar PubMed

Kim, Y.M., Bergonia, H.A., Muller, C., Pitt, B.R., Watkins, W.D., and Lancaster, J.R. (1995). Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J. Biol. Chem. 270: 5710–5713, https://doi.org/10.1074/jbc.270.11.5710.Suche in Google Scholar PubMed

Knox, W.E. (1951). Two mechanisms which increase in vivo the liver tryptophan peroxidase activity: specific enzyme adaptation and stimulation of the pituitary adrenal system. Br. J. Exp. Pathol. 32: 462–469.Suche in Google Scholar

Kuhl, T. and Imhof, D. (2014). Regulatory Fe(II/III) heme: the reconstruction of a molecule’s biography. Chembiochem 15: 2024–2035, https://doi.org/10.1002/cbic.201402218.Suche in Google Scholar PubMed

Kumar, S. and Bandyopadhyay, U. (2005). Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 157: 175–188, https://doi.org/10.1016/j.toxlet.2005.03.004.Suche in Google Scholar PubMed

Lee, C.M., Wilderman, P.R., Park, J.W., Murphy, T.J., and Morgan, E.T. (2020). Tyrosine nitration contributes to nitric oxide-stimulated degradation of CYP2B6. Mol. Pharmacol. 98: 267–279, https://doi.org/10.1124/molpharm.120.000020.Suche in Google Scholar PubMed PubMed Central

Lenoir, C., Rollason, V., Desmeules, J.A., and Samer, C.F. (2021). Influence of inflammation on cytochromes p450 activity in adults: a systematic review of the literature. Front. Pharmacol. 12: 733935, https://doi.org/10.3389/fphar.2021.733935.Suche in Google Scholar PubMed PubMed Central

Leung, G.C., Fung, S.S., Gallio, A.E., Blore, R., Alibhai, D., Raven, E.L., and Hudson, A.J. (2021). Unravelling the mechanisms controlling heme supply and demand. Proc. Natl. Acad. Sci. U.S.A. 118, https://doi.org/10.1073/pnas.2104008118.Suche in Google Scholar PubMed PubMed Central

Liu, L., Dumbrepatil, A.B., Fleischhacker, A.S., Marsh, E.N.G., and Ragsdale, S.W. (2020). Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site. J. Biol. Chem. 295: 17227–17240, https://doi.org/10.1074/jbc.ra120.014919.Suche in Google Scholar

Mader, S.L., Lopez, A., Lawatscheck, J., Luo, Q., Rutz, D.A., Gamiz-Hernandez, A.P., Sattler, M., Buchner, J., and Kaila, V.R.I. (2020). Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90. Nat. Commun. 11: 1410, https://doi.org/10.1038/s41467-020-15050-0.Suche in Google Scholar PubMed PubMed Central

Mense, S.M. and Zhang, L. (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 16: 681–692, https://doi.org/10.1038/sj.cr.7310086.Suche in Google Scholar PubMed

Nelp, M.T., Kates, P.A., Hunt, J.T., Newitt, J.A., Balog, A., Maley, D., Zhu, X., Abell, L., Allentoff, A., Borzilleri, R., et al.. (2018). Immune-modulating enzyme indoleamine 2, 3-dioxygenase is effectively inhibited by targeting its apo-form. Proc. Natl. Acad. Sci. U.S.A. 115: 3249–3254, https://doi.org/10.1073/pnas.1719190115.Suche in Google Scholar PubMed PubMed Central

Ponka, P. (1999). Cell biology of heme. Am. J. Med. Sci. 318: 241–256, https://doi.org/10.1097/00000441-199910000-00004.Suche in Google Scholar PubMed

Reddi, A.R. and Hamza, I. (2016). Heme mobilization in animals: a metallolipid’s journey. Acc. Chem. Res. 49: 1104–1110, https://doi.org/10.1021/acs.accounts.5b00553.Suche in Google Scholar PubMed PubMed Central

Runyen-Janecky, L.J. (2013). Role and regulation of heme iron acquisition in gram-negative pathogens. Front. Cell. Infect. Microbiol. 3: 55, https://doi.org/10.3389/fcimb.2013.00055.Suche in Google Scholar PubMed PubMed Central

Sarkar, A., Dai, Y., Haque, M.M., Seeger, F., Ghosh, A., Garcin, E.D., Montfort, W.R., Hazen, S.L., Misra, S., and Stuehr, D.J. (2015). Heat shock protein 90 associates with the Per-Arnt-Sim domain of heme-free soluble guanylate cyclase: implications for enzyme maturation. J. Biol. Chem. 290: 21615–21628, https://doi.org/10.1074/jbc.m115.645515.Suche in Google Scholar

Schmid, R. and McDonagh, A.F. (1975). The enzymatic formation of bilirubin. Ann. N. Y. Acad. Sci. 244: 533–552, https://doi.org/10.1111/j.1749-6632.1975.tb41553.x.Suche in Google Scholar PubMed

Shah, V., Wiest, R., Garcia-Cardena, G., Cadelina, G., Groszmann, R.J., and Sessa, W.C. (1999). Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am. J. Physiol. 277: G463–G468, https://doi.org/10.1152/ajpgi.1999.277.2.g463.Suche in Google Scholar PubMed

Smith, B.C., Fernhoff, N.B., and Marletta, M.A. (2012). Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation. Biochemistry 51: 1028–1040, https://doi.org/10.1021/bi201818c.Suche in Google Scholar PubMed PubMed Central

Stojanovski, B.M., Hunter, G.A., Na, I., Uversky, V.N., Jiang, R.H.Y., and Ferreira, G.C. (2019). 5-Aminolevulinate synthase catalysis: the catcher in heme biosynthesis. Mol. Genet. Metabol. 128: 178–189, https://doi.org/10.1016/j.ymgme.2019.06.003.Suche in Google Scholar PubMed PubMed Central

Stuehr, D.J., Misra, S., Dai, Y., and Ghosh, A. (2021). Maturation, Inactivation, and recovery mechanisms of soluble guanylyl cyclase. J. Biol. Chem. 296: 100336, doi:https://doi.org/10.1016/j.jbc.2021.100336.Suche in Google Scholar PubMed PubMed Central

Stuehr, D.J., Santolini, J., Wang, Z.Q., Wei, C.C., and Adak, S. (2004). Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem. 279: 36167–36170, https://doi.org/10.1074/jbc.r400017200.Suche in Google Scholar PubMed

Sutherland, M.C., Rankin, J.A., and Kranz, R.G. (2016). Heme trafficking and modifications during system I cytochrome c biogenesis: insights from heme redox potentials of Ccm proteins. Biochemistry 55: 3150–3156, https://doi.org/10.1021/acs.biochem.6b00427.Suche in Google Scholar PubMed PubMed Central

Sweeny, E.A., Hunt, A.P., Batka, A.E., Schlanger, S., Lehnert, N., and Stuehr, D.J. (2021). Nitric oxide and heme-NO stimulate superoxide production by NADPH oxidase 5. Free Radic. Biol. Med. 172: 252–263, https://doi.org/10.1016/j.freeradbiomed.2021.06.008.Suche in Google Scholar PubMed PubMed Central

Sweeny, E.A., Schlanger, S., and Stuehr, D.J. (2020). Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol. 36: 101656, https://doi.org/10.1016/j.redox.2020.101656.Suche in Google Scholar PubMed PubMed Central

Sweeny, E.A., Singh, A.B., Chakravarti, R., Martinez-Guzman, O., Saini, A., Haque, M.M., Garee, G., Dans, P.D., Hannibal, L., Reddi, A.R., et al.. (2018). Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J. Biol. Chem. 293: 14557–14568, https://doi.org/10.1074/jbc.ra118.004169.Suche in Google Scholar PubMed PubMed Central

Swenson, S.A., Moore, C.M., Marcero, J.R., Medlock, A.E., Reddi, A.R., and Khalimonchuk, O. (2020). From Synthesis to utilization: the ins and outs of mitochondrial heme. Cells 9: 579, doi:https://doi.org/10.3390/cells9030579.Suche in Google Scholar PubMed PubMed Central

Thomas, D.D., Miranda, K.M., Colton, C.A., Citrin, D., Espey, M.G., and Wink, D.A. (2003). Heme proteins and nitric oxide (NO): the neglected, eloquent chemistry in NO redox signaling and regulation. Antioxidants Redox Signal. 5: 307–317, https://doi.org/10.1089/152308603322110887.Suche in Google Scholar PubMed

Tristan, C., Shahani, N., Sedlak, T.W., and Sawa, A. (2011). The diverse functions of GAPDH: views from different subcellular compartments. Cell. Signal. 23: 317–323, https://doi.org/10.1016/j.cellsig.2010.08.003.Suche in Google Scholar PubMed PubMed Central

Tsiftsoglou, A.S., Tsamadou, A.I., and Papadopoulou, L.C. (2006). Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111: 327–345, https://doi.org/10.1016/j.pharmthera.2005.10.017.Suche in Google Scholar PubMed

Tupta, B., Stuehr, E., Sumi, M.P., Sweeny, E.A., Smith, B., Stuehr, D.J., and Ghosh, A. (2022). GAPDH is involved in the heme-maturation of myoglobin and hemoglobin. FASEB J. 36: e22099, https://doi.org/10.1096/fj.202101237rr.Suche in Google Scholar PubMed PubMed Central

Uma, S., Hartson, S.D., Chen, J.J., and Matts, R.L. (1997). Hsp90 is obligatory for the heme-regulated eIF-2α kinase to acquire and maintain an activable conformation. J. Biol. Chem. 272: 11648–11656, https://doi.org/10.1016/s0021-9258(18)39436-5.Suche in Google Scholar

Venema, R.C., Venema, V.J., Ju, H., Harris, M.B., Snead, C., Jilling, T., Dimitropoulou, C., Maragoudakis, M.E., and Catravas, J.D. (2003). Novel complexes of guanylate cyclase with heat shock protein 90 and nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 285: H669–H678, https://doi.org/10.1152/ajpheart.01025.2002.Suche in Google Scholar PubMed

Waheed, S.M., Ghosh, A., Chakravarti, R., Biswas, A., Haque, M.M., Panda, K., and Stuehr, D.J. (2010). Nitric oxide blocks cellular heme insertion into a broad range of heme proteins. Free Radic. Biol. Med. 48: 1548–1558, https://doi.org/10.1016/j.freeradbiomed.2010.02.038.Suche in Google Scholar PubMed PubMed Central

White, M.R. and Garcin, E.D. (2017). D-Glyceraldehyde-3-phosphate dehydrogenase structure and function. Subcell. Biochem. 83: 413–453.10.1007/978-3-319-46503-6_15Suche in Google Scholar PubMed

Winterhalter, K.H., Heywood, J.D., Huehns, E.R., and Finch, C.A. (1969). The free globin in human erythrocytes. I. Br. J. Haematol. 16: 523–535, https://doi.org/10.1111/j.1365-2141.1969.tb00434.x.Suche in Google Scholar PubMed

Wu, N., Yin, L., Hanniman, E.A., Joshi, S., and Lazar, M.A. (2009). Negative feedback maintenance of heme homeostasis by its receptor. Rev-erbα. Genes Dev. 23: 2201–2209, https://doi.org/10.1101/gad.1825809.Suche in Google Scholar PubMed PubMed Central

Yuan, X., Rietzschel, N., Kwon, H., Walter Nuno, A.B., Hanna, D.A., Phillips, J.D., Raven, E.L., Reddi, A.R., and Hamza, I. (2016). Regulation of intracellular heme trafficking revealed by subcellular reporters. Proc. Natl. Acad. Sci. U.S.A. 113: E5144–E5152, https://doi.org/10.1073/pnas.1609865113.Suche in Google Scholar PubMed PubMed Central

Received: 2022-06-03
Accepted: 2022-08-17
Published Online: 2022-09-26
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2022-0197/html
Button zum nach oben scrollen