Abstract
Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.
Funding source: Burroughs Wellcome Fund
Award Identifier / Grant number: Career Award at the Scientific Interface
Acknowledgements
Rebecca Donegan is supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by a Burroughs Wellcome Fund CASI grant to R.K.D.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Aich, A., Freundlich, M., and Vekilov, P.G. (2015). The free heme concentration in healthy human erythrocytes. Blood Cell Mol. Dis. 55: 402–409. https://doi.org/10.1016/j.bcmd.2015.09.003.Search in Google Scholar PubMed PubMed Central
Akhter, F., Womack, E., Vidal, J.E., Le Breton, Y., Mciver, K.S., Pawar, S., and Eichenbaum, Z. (2020). Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen’s global transcriptome. Sci. Rep. 10: 15202. https://doi.org/10.1038/s41598-020-71910-1.Search in Google Scholar PubMed PubMed Central
Akhter, F., Womack, E., Vidal, J.E., Le Breton, Y., Mciver, K.S., Pawar, S., and Eichenbaum, Z. (2021). Hemoglobin induces early and robust biofilm development in Streptococcus pneumoniae by a pathway that involves comC but not the cognate comDE two-component system. Infect. Immun. 89: e007799–e820. https://doi.org/10.1128/iai.00779-20.Search in Google Scholar PubMed PubMed Central
Allen, C.E., Burgos, J.M., and Schmitt, M.P. (2013). Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae. J. Bacteriol. 195: 2852–2863. https://doi.org/10.1128/jb.00244-13.Search in Google Scholar PubMed PubMed Central
Allen, C.E. and Schmitt, M.P. (2009). HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J. Bacteriol. 191: 2638–2648. https://doi.org/10.1128/jb.01784-08.Search in Google Scholar
Allen, C.E. and Schmitt, M.P. (2011). Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J. Bacteriol. 193: 5374–5385. https://doi.org/10.1128/jb.05508-11.Search in Google Scholar
Allen, C.E. and Schmitt, M.P. (2015). Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J. Bacteriol. 197: 553–562. https://doi.org/10.1128/jb.02413-14.Search in Google Scholar PubMed PubMed Central
Amorim, G.C.D., Prochnicka-Chalufour, A., Delepelaire, P., Lefèvre, J., Simenel, C., Wandersman, C., Delepierre, M., and Izadi-Pruneyre, N. (2013). The structure of HasB reveals a new class of TonB protein fold. PLoS One 8: e58964. https://doi.org/10.1371/journal.pone.0058964.Search in Google Scholar PubMed PubMed Central
Anzaldi, L.L. and Skaar, E.P. (2010). Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78: 4977–4989. https://doi.org/10.1128/iai.00613-10.Search in Google Scholar
Ates, L.S. (2020). New insights into the mycobacterial Pe and PPE proteins provide a framework for future research. Mol. Microbiol. 113: 4–21. https://doi.org/10.1111/mmi.14409.Search in Google Scholar PubMed PubMed Central
Barañano, D.E., Rao, M., Ferris, C.D., and Snyder, S.H. (2002). Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 99: 16093–16098. https://doi.org/10.1073/pnas.252626999.Search in Google Scholar PubMed PubMed Central
Bibb, L.A., Kunkle, C.A., and Schmitt, M.P. (2007). The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect. Immun. 75: 2421–2431. https://doi.org/10.1128/iai.01821-06.Search in Google Scholar
Bozza, M.T. and Jeney, V. (2020). Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs. Front. Immunol. 11: 1323. https://doi.org/10.3389/fimmu.2020.01323.Search in Google Scholar PubMed PubMed Central
Briaud, P., Camus, L., Bastien, S., Doléans-Jordheim, A., Vandenesch, F., and Moreau, K. (2019). Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci. Rep. 9: 16564. https://doi.org/10.1038/s41598-019-52975-z.Search in Google Scholar PubMed PubMed Central
Celis, A.I. and Dubois, J.L. (2019). Making and breaking heme. Curr. Opin. Struct. Biol. 59: 19–28. https://doi.org/10.1016/j.sbi.2019.01.006.Search in Google Scholar PubMed PubMed Central
Ch’ng, J.-H., Muthu, M., Chong, K.K.L., Wong, J.J., Tan, C.A.Z., Koh, Z.J.S., Lopez, D., Matysik, A., Nair, Z.J., Barkham, T., et al.. (2022). Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. ISME J. 16: 2015–2026. https://doi.org/10.1038/s41396-022-01248-1.Search in Google Scholar PubMed PubMed Central
Chao, A., Sieminski, P.J., Owens, C.P., and Goulding, C.W. (2018). Iron acquisition in Mycobacterium tuberculosis. Chem. Rev. 119: 1193–1220. https://doi.org/10.1021/acs.chemrev.8b00285.Search in Google Scholar PubMed PubMed Central
Chim, N., Iniguez, A., Nguyen, T.Q., and Goulding, C.W. (2010). Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395: 595–608. https://doi.org/10.1016/j.jmb.2009.11.025.Search in Google Scholar PubMed PubMed Central
Choby, J.E., Grunenwald, C.M., Celis, A.I., Gerdes, S.Y., Dubois, J.L., and Skaar, E.P. (2018). Staphylococcus aureus HemX modulates glutamyl-tRNA reductase abundance to regulate heme biosynthesis. mBio 9: e022877–e2317. https://doi.org/10.1128/mbio.02287-17.Search in Google Scholar PubMed PubMed Central
Choby, J.E. and Skaar, E.P. (2016). Heme synthesis and acquisition in bacterial pathogens. J. Mol. Biol. 428: 3408–3428. https://doi.org/10.1016/j.jmb.2016.03.018.Search in Google Scholar PubMed PubMed Central
Conroy, B.S., Grigg, J.C., Kolesnikov, M., Morales, L.D., and Murphy, M.E.P. (2019). Staphylococcus aureus heme and siderophore-iron acquisition pathways. Biometals 32: 409–424. https://doi.org/10.1007/s10534-019-00188-2.Search in Google Scholar PubMed
Contreras, H., Chim, N., Credali, A., and Goulding, C.W. (2014). Heme uptake in bacterial pathogens. Curr. Opin. Chem. Biol. 19: 34–41. https://doi.org/10.1016/j.cbpa.2013.12.014.Search in Google Scholar PubMed PubMed Central
Cornforth, D.M., Dees, J.L., Ibberson, C.B., Huse, H.K., Mathiesen, I.H., Kirketerp-Møller, K., Wolcott, R.D., Rumbaugh, K.P., Bjarnsholt, T., and Whiteley, M. (2018). Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl. Acad. Sci. USA 115: E5125–E5134. https://doi.org/10.1073/pnas.1717525115.Search in Google Scholar PubMed PubMed Central
Costa, D.L., Amaral, E.P., Andrade, B.B., and Sher, A. (2020). Modulation of inflammation and immune responses by heme oxygenase-1: implications for infection with intracellular pathogens. Antioxidants 9: 1205. https://doi.org/10.3390/antiox9121205.Search in Google Scholar PubMed PubMed Central
Costa, D.L., Namasivayam, S., Amaral, E.P., Arora, K., Chao, A., Mittereder, L.R., Maiga, M., Boshoff, H.I., Barry, C.E.III, and Goulding, C.W. (2016). Pharmacological inhibition of host heme oxygenase-1 suppresses Mycobacterium tuberculosis infection in vivo by a mechanism dependent on T lymphocytes. mBio 7: e016755–e1716. https://doi.org/10.1128/mbio.01675-16.Search in Google Scholar PubMed PubMed Central
Dailey, H.A., Dailey, T.A., Gerdes, S., Jahn, D., Jahn, M., O’brian, M.R., and Warren, M.J. (2017). Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81: e000488–e116. https://doi.org/10.1128/mmbr.00048-16.Search in Google Scholar PubMed PubMed Central
Dailey, H.A., Gerdes, S., Dailey, T.A., Burch, J.S., and Phillips, J.D. (2015). Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl. Acad. Sci. USA 112: 2210–2215. https://doi.org/10.1073/pnas.1416285112.Search in Google Scholar PubMed PubMed Central
Dailey, T.A., Boynton, T.O., Albetel, A.-N., Gerdes, S., Johnson, M.K., and Dailey, H.A. (2010). Discovery and characterization of HemQ an essential heme biosynthetic pathway component. J. Biol. Chem. 285: 25978–25986. https://doi.org/10.1074/jbc.m110.142604.Search in Google Scholar
Dauros-Singorenko, P., Wiles, S., and Swift, S. (2020). Staphylococcus aureus biofilms and their response to a relevant in vivo iron source. Front. Microbiol. 11: 509525. https://doi.org/10.3389/fmicb.2020.509525.Search in Google Scholar PubMed PubMed Central
Deniau, C., Gilli, R., Izadi-Pruneyre, N., Létoffé, S., Delepierre, M., Wandersman, C., Briand, C., and Lecroisey, A. (2003). Thermodynamics of heme binding to the HasASM hemophore: effect of mutations at three key residues for heme uptake. Biochemistry 42: 10627–10633. https://doi.org/10.1021/bi030015k.Search in Google Scholar PubMed
Dent, A.T., Mouriño, S., Huang, W., and Wilks, A. (2019). Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J. Biol. Chem. 294: 2771–5555. https://doi.org/10.1074/jbc.ra118.006185.Search in Google Scholar
Dent, A.T. and Wilks, A. (2020). Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane receptor HasR to extracellular heme sensing and transport. J. Biol. Chem. 295: 10456–10467. https://doi.org/10.1074/jbc.ra120.014081.Search in Google Scholar PubMed PubMed Central
Donegan, R.K., Moore, C.M., Hanna, D.A., and Reddi, A.R. (2019). Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic. Biol. Med. 133: 88–100. https://doi.org/10.1016/j.freeradbiomed.2018.08.005.Search in Google Scholar PubMed PubMed Central
Dutra, F.F. and Bozza, M.T. (2014). Heme on innate immunity and inflammation. Front. Pharmacol. 5: 115. https://doi.org/10.3389/fphar.2014.00115.Search in Google Scholar PubMed PubMed Central
Ellis-Guardiola, K., Mahoney, B.J., and Clubb, R.T. (2021). NEAr transporter (NEAT) domains: unique surface displayed heme chaperones that enable Gram-positive bacteria to capture heme-iron from hemoglobin. Front. Microbiol. 11: 607679. https://doi.org/10.3389/fmicb.2020.607679.Search in Google Scholar PubMed PubMed Central
Fernandez, P.L., Dutra, F.F., Alves, L., Figueiredo, R.T., Mourão-Sa, D., Fortes, G.B., Bergstrand, S., Lönn, D., Cevallos, R.R., and Pereira, R.M. (2010). Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J. Biol. Chem. 285: 32844–32851. https://doi.org/10.1074/jbc.m110.146076.Search in Google Scholar PubMed PubMed Central
Fontán, P.A., Aris, V., Alvarez, M.E., Ghanny, S., Cheng, J., Soteropoulos, P., Trevani, A., Pine, R., and Smith, I. (2008). Mycobacterium tuberculosis sigma factor E regulon modulates the host inflammatory response. J. Infect. Dis. 198: 877–885. https://doi.org/10.1086/591098.Search in Google Scholar PubMed
Frankenberg, L., Brugna, M., and Hederstedt, L. (2002). Enterococcus faecalis heme-dependent catalase. Am Soc Microbiol 184: 6351–6356.10.1128/JB.184.22.6351-6356.2002Search in Google Scholar PubMed PubMed Central
Frunzke, J., Gätgens, C., Brocker, M., and Bott, M. (2011). Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J. Bacteriol. 193: 1212–1221. https://doi.org/10.1128/jb.01130-10.Search in Google Scholar PubMed PubMed Central
Ghigo, J.-M., Letoffe, S., and Wandersman, C. (1997). A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J. Bacteriol. 179: 3572–3579. https://doi.org/10.1128/jb.179.11.3572-3579.1997.Search in Google Scholar PubMed PubMed Central
Ghio, A.J., Roggli, V.L., Soukup, J.M., Richards, J.H., Randell, S.H., and Muhlebach, M.S. (2013). Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. J. Cyst. Fibros. 12: 390–398. https://doi.org/10.1016/j.jcf.2012.10.010.Search in Google Scholar PubMed
Glasser, N.R., Hunter, R.C., Liou, T.G., Newman, D.K., and Investigators, M.W.C.C. (2019). Refinement of metabolite detection in cystic fibrosis sputum reveals heme correlates with lung function decline. PLoS One 14: e0226578. https://doi.org/10.1371/journal.pone.0226578.Search in Google Scholar PubMed PubMed Central
Hammer, N.D., Reniere, M.L., Cassat, J.E., Zhang, Y., Hirsch, A.O., Indriati Hood, M., and Skaar, E.P. (2013). Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 4: e002411–e313. https://doi.org/10.1128/mBio.00241-13.Search in Google Scholar PubMed PubMed Central
Hammer, N.D. and Skaar, E.P. (2011). Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu. Rev. Microbiol. 65: 129–147. https://doi.org/10.1146/annurev-micro-090110-102851.Search in Google Scholar PubMed PubMed Central
Hooda, J., Shah, A., and Zhang, L. (2014). Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 6: 1080–1102. https://doi.org/10.3390/nu6031080.Search in Google Scholar PubMed PubMed Central
Hvidberg, V., Maniecki, M.B., Jacobsen, C., Højrup, P., Møller, H.J., and Moestrup, S.K. (2005). Identification of the receptor scavenging hemopexin-heme complexes. Blood 106: 2572–2579. https://doi.org/10.1182/blood-2005-03-1185.Search in Google Scholar PubMed
Ibberson, C.B., Whiteley, M., and Sperandio, V. (2019). The Staphylococcus aureus transcriptome during cystic fibrosis lung infection. mBio 10: e027744–e2819. https://doi.org/10.1128/mbio.02774-19.Search in Google Scholar
Jepkorir, G., Rodríguez, J.C., Rui, H., Im, W., Lovell, S., Battaile, K.P., Alontaga, A.Y., Yukl, E.T., Moënne-Loccoz, P., and Rivera, M. (2010). Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa. J. Am. Chem. Soc. 132: 9857–9872. https://doi.org/10.1021/ja103498z.Search in Google Scholar PubMed PubMed Central
Jones, C.M. and Niederweis, M. (2011). Mycobacterium tuberculosis can utilize heme as an iron source. J. Bacteriol. 193: 1767–1770. https://doi.org/10.1128/jb.01312-10.Search in Google Scholar
Knippel, R.J., Wexler, A.G., Miller, J.M., Beavers, W.N., Weiss, A., De Crécy-Lagard, V., Edmonds, K.A., Giedroc, D.P., and Skaar, E.P. (2020). Clostridioides difficile senses and hijacks host heme for incorporation into an oxidative stress defense system. Cell Host Microbe 28: 411–421.e6. https://doi.org/10.1016/j.chom.2020.05.015.Search in Google Scholar PubMed PubMed Central
Lansky, I.B., Lukat-Rodgers, G.S., Block, D., Rodgers, K.R., Ratliff, M., and Wilks, A. (2006). The cytoplasmic heme-binding protein (PhuS) from the heme uptake system of Pseudomonas aeruginosa is an intracellular heme-trafficking protein to the δ-regioselective heme oxygenase. J. Biol. Chem. 281: 13652–13662. https://doi.org/10.1074/jbc.m600824200.Search in Google Scholar
Lee, T.-S. and Chau, L.-Y. (2002). Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. 8: 240–246. https://doi.org/10.1038/nm0302-240.Search in Google Scholar PubMed
Letoffe, S., Ghigo, J., and Wandersman, C. (1994). Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc. Natl. Acad. Sci. USA 91: 9876–9880. https://doi.org/10.1073/pnas.91.21.9876.Search in Google Scholar PubMed PubMed Central
Liu, M., Ferrandez, Y., Bouhsira, E., Monteil, M., Franc, M., Boulouis, H.-J., and Biville, F. (2012). Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and Flea invasion. PLoS One 7: e48408. https://doi.org/10.1371/journal.pone.0048408.Search in Google Scholar PubMed PubMed Central
Llamas, M.A., Imperi, F., Visca, P., and Lamont, I.L. (2014). Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol. Rev. 38: 569–597. https://doi.org/10.1111/1574-6976.12078.Search in Google Scholar PubMed
Mack, J., Vermeiren, C., Heinrichs, D.E., and Stillman, M.J. (2004). In vivo heme scavenging by Staphylococcus aureus IsdC and IsdE proteins. Biochem. Biophys. Res. Commun. 320: 781–788. https://doi.org/10.1016/j.bbrc.2004.06.025.Search in Google Scholar PubMed
Marvig, R.L., Damkiær, S., Khademi, S.H., Markussen, T.M., Molin, S., and Jelsbak, L. (2014). Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5: e009666–e1014. https://doi.org/10.1128/mBio.00966-14.Search in Google Scholar PubMed PubMed Central
Matthews, S.J., Pacholarz, K.J., France, A.P., Jowitt, T.A., Hay, S., Barran, P.E., and Munro, A.W. (2019). MhuD from Mycobacterium tuberculosis: probing a dual role in heme storage and degradation. ACS Infect. Dis. 5: 1855–1866. https://doi.org/10.1021/acsinfecdis.9b00181.Search in Google Scholar PubMed
Mayfield, J.A., Hammer, N.D., Kurker, R.C., Chen, T.K., Ojha, S., Skaar, E.P., and Dubois, J.L. (2013). The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype. J. Biol. Chem. 288: 23488–23504. https://doi.org/10.1074/jbc.m112.442335.Search in Google Scholar
Mazmanian, S.K., Skaar, E.P., Gaspar, A.H., Humayun, M., Gornicki, P., Jelenska, J., Joachmiak, A., Missiakas, D.M., and Schneewind, O. (2003). Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299: 906–909. https://doi.org/10.1126/science.1081147.Search in Google Scholar PubMed
Mitra, A., Ko, Y.-H., Cingolani, G., and Niederweis, M. (2019). Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nat. Commun. 10: 4260. https://doi.org/10.1038/s41467-019-12109-5.Search in Google Scholar PubMed PubMed Central
Mitra, A., Speer, A., Lin, K., Ehrt, S., and Niederweis, M. (2017). PPE surface proteins are required for heme utilization by Mycobacterium tuberculosis. mBio 8: e017200–e1816. https://doi.org/10.1128/mbio.01720-16.Search in Google Scholar PubMed PubMed Central
Morgan, W.T., Heng Liem, H., Sutor, R.P., and Muller-Eberhard, U. (1976). Transfer of heme from heme-albumin to hemopexin. Biochim. Biophys. Acta Gen. Subj. 444: 435–445. https://doi.org/10.1016/0304-4165(76)90387-1.Search in Google Scholar PubMed
Mouriño, S., Giardina, B.J., Reyes-Caballero, H., and Wilks, A. (2016). Metabolite-driven regulation of heme uptake by the biliverdin IXβ/δ-selective heme oxygenase (HemO) of Pseudomonas aeruginosa. J. Biol. Chem. 291: 20503–20515. https://doi.org/10.1074/jbc.M116.728527.Search in Google Scholar PubMed PubMed Central
Mouriño, S. and Wilks, A. (2021). Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv. Microb. Physiol. 79: 89–132.10.1016/bs.ampbs.2021.07.004Search in Google Scholar PubMed PubMed Central
Muller-Eberhard, U. (1970). Hemopexin. N. Engl. J. Med. 283: 1090–1094. https://doi.org/10.1056/nejm197011122832007.Search in Google Scholar
Nielsen, M.J., Petersen, S.V., Jacobsen, C., Thirup, S., Enghild, J.J., Graversen, J.H., and Moestrup, S.K. (2007). A unique loop extension in the serine protease domain of haptoglobin is essential for CD163 recognition of the haptoglobin-hemoglobin complex. J. Biol. Chem. 282: 1072–1079. https://doi.org/10.1074/jbc.m605684200.Search in Google Scholar PubMed
Nobles, C.L. and Maresso, A.W. (2011). The theft of host heme by Gram-positive pathogenic bacteria. Metallomics 3: 788–796. https://doi.org/10.1039/c1mt00047k.Search in Google Scholar PubMed
O’neill, M.J. and Wilks, A. (2013). The P. aeruginosa heme binding protein PhuS is a heme oxygenase Titratable regulator of heme uptake. ACS Chem. Biol. 8: 1794–1802.10.1021/cb400165bSearch in Google Scholar PubMed PubMed Central
Ochsner, U.A., Johnson, Z., and Vasil, M.L. (2000). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146: 185–198. https://doi.org/10.1099/00221287-146-1-185.Search in Google Scholar PubMed
Otterbein, L.E., Bach, F.H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R.J., Flavell, R.A., and Choi, A.M. (2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6: 422–428. https://doi.org/10.1038/74680.Search in Google Scholar PubMed
Owens, C.P., Chim, N., and Goulding, C.W. (2013a). Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med. Chem. 5: 1391–1403. https://doi.org/10.4155/fmc.13.109.Search in Google Scholar PubMed PubMed Central
Owens, C.P., Chim, N., Graves, A.B., Harmston, C.A., Iniguez, A., Contreras, H., Liptak, M.D., and Goulding, C.W. (2013b). The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J. Biol. Chem. 288: 21714–21728. https://doi.org/10.1074/jbc.m113.453076.Search in Google Scholar
Owens, C.P., Du, J., Dawson, J.H., and Goulding, C.W. (2012). Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51: 1518–1531. https://doi.org/10.1021/bi2018305.Search in Google Scholar PubMed PubMed Central
Parish, T., Schaeffer, M., Roberts, G., and Duncan, K. (2005). HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis. Tuberculosis 85: 197–204. https://doi.org/10.1016/j.tube.2005.01.002.Search in Google Scholar PubMed
Philippidis, P., Mason, J., Evans, B., Nadra, I., Taylor, K., Haskard, D., and Landis, R. (2004). Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 94: 119–126. https://doi.org/10.1161/01.res.0000109414.78907.f9.Search in Google Scholar PubMed
Quaye, I.K. (2008). Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 102: 735–742. https://doi.org/10.1016/j.trstmh.2008.04.010.Search in Google Scholar PubMed
Runyen-Janecky, L.J. (2013). Role and regulation of heme iron acquisition in Gram-negative pathogens. Front. Cell. Infect. Microbiol. 3: 55. https://doi.org/10.3389/fcimb.2013.00055.Search in Google Scholar PubMed PubMed Central
Severance, S. and Hamza, I. (2009). Trafficking of heme and porphyrins in metazoa. Chem. Rev. 109: 4596–4616. https://doi.org/10.1021/cr9001116.Search in Google Scholar PubMed PubMed Central
Shaver, C.M., Upchurch, C.P., Janz, D.R., Grove, B.S., Putz, N.D., Wickersham, N.E., Dikalov, S.I., Ware, L.B., and Bastarache, J.A. (2016). Cell-free hemoglobin: a novel mediator of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 310: L532–L541. https://doi.org/10.1152/ajplung.00155.2015.Search in Google Scholar PubMed PubMed Central
Silva, G., Jeney, V., Chora, Â., Larsen, R., Balla, J., and Soares, M.P. (2009). Oxidized hemoglobin is an endogenous proinflammatory agonist that targets vascular endothelial cells. J. Biol. Chem. 284: 29582–29595. https://doi.org/10.1074/jbc.m109.045344.Search in Google Scholar PubMed PubMed Central
Singla, S., Sysol, J.R., Dille, B., Jones, N., Chen, J., and Machado, R.F. (2017). Hemin causes lung microvascular endothelial barrier dysfunction by necroptotic cell death. Am. J. Respir. Cell Mol. Biol. 57: 307–314. https://doi.org/10.1165/rcmb.2016-0287oc.Search in Google Scholar PubMed PubMed Central
Skaar, E.P., Humayun, M., Bae, T., Debord, K.L., and Schneewind, O. (2004). Iron-source preference of Staphylococcus aureus infections. Science 305: 1626–1628. https://doi.org/10.1126/science.1099930.Search in Google Scholar PubMed
Smith, A. and Mcculloh, R.J. (2015). Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front. Physiol. 6: 187. https://doi.org/10.3389/fphys.2015.00187.Search in Google Scholar PubMed PubMed Central
Smith, A.D. and Wilks, A. (2012). Extracellular heme uptake and the challenges of bacterial cell membranes. Curr. Top. Membr. 69: 359–392. https://doi.org/10.1016/b978-0-12-394390-3.00013-6.Search in Google Scholar
Smith, A.D. and Wilks, A. (2015). Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J. Biol. Chem. 290: 7756–7766. https://doi.org/10.1074/jbc.m114.633495.Search in Google Scholar
Soares, M.P. and Bach, F.H. (2009). Heme oxygenase-1: from biology to therapeutic potential. Trends Mol. Med. 15: 50–58. https://doi.org/10.1016/j.molmed.2008.12.004.Search in Google Scholar PubMed
Speziali, C.D., Dale, S.E., Henderson, J.A., Vinés, E.D., and Heinrichs, D.E. (2006). Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol. 188: 2048–2055. https://doi.org/10.1128/jb.188.6.2048-2055.2006.Search in Google Scholar PubMed PubMed Central
Spittaels, K.-J., Van Uytfanghe, K., Zouboulis, C.C., Stove, C., Crabbé, A., and Coenye, T. (2021). Porphyrins produced by acneic Cutibacterium acnes strains activate the inflammasome by inducing K+ leakage. iScience 24: 102575. https://doi.org/10.1016/j.isci.2021.102575.Search in Google Scholar PubMed PubMed Central
Stauff, D.L. and Skaar, E.P. (2009). The heme sensor system of Staphylococcus aureus. Contrib. Microbiol. 16: 120–135. https://doi.org/10.1159/000219376.Search in Google Scholar PubMed PubMed Central
Tong, Y. and Guo, M. (2007). Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa. J. Biol. Inorg Chem. 12: 735–750. https://doi.org/10.1007/s00775-007-0226-x.Search in Google Scholar PubMed
Torres, V.J., Stauff, D.L., Pishchany, G., Bezbradica, J.S., Gordy, L.E., Iturregui, J., Anderson, K.L., Dunman, P.M., Joyce, S., and Skaar, E.P. (2007). A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1: 109–119. https://doi.org/10.1016/j.chom.2007.03.001.Search in Google Scholar PubMed PubMed Central
Tullius, M.V., Harmston, C.A., Owens, C.P., Chim, N., Morse, R.P., Mcmath, L.M., Iniguez, A., Kimmey, J.M., Sawaya, M.R., Whitelegge, J.P., et al.. (2011). Discovery and characterization of a unique mycobacterial heme acquisition system. Proc. Natl. Acad. Sci. USA 108: 5051–5056. https://doi.org/10.1073/pnas.1009516108.Search in Google Scholar PubMed PubMed Central
Tullius, M.V., Nava, S., and Horwitz, M.A. (2019). PPE37 is essential for Mycobacterium tuberculosis heme-iron acquisition (HIA), and a defective PPE37 in Mycobacterium bovis BCG prevents HIA. Infect. Immun. 87: e005400–e618. https://doi.org/10.1128/IAI.00540-18.Search in Google Scholar PubMed PubMed Central
Verstraete, M.M., Morales, L.D., Kobylarz, M.J., Loutet, S.A., Laakso, H.A., Pinter, T.B., Stillman, M.J., Heinrichs, D.E., and Murphy, M.E.P. (2019). The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. J. Biol. Chem. 294: 11622–11636. https://doi.org/10.1074/jbc.ra119.007757.Search in Google Scholar
Wang, Q., Boshoff, H.I.M., Harrison, J.R., Ray, P.C., Green, S.R., Wyatt, P.G., and Barry, C.E. (2020). PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science 367: 1147–1151. https://doi.org/10.1126/science.aav5912.Search in Google Scholar PubMed
Whitby, P.W., Seale, T.W., Vanwagoner, T.M., Morton, D.J., and Stull, T.L. (2009). The iron/heme regulated genes of Haemophilus influenzae: comparative transcriptional profiling as a tool to define the species core modulon. BMC Genom. 10: 6. https://doi.org/10.1186/1471-2164-10-6.Search in Google Scholar PubMed PubMed Central
Wilson, T., Mouriño, S., and Wilks, A. (2021). The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus. J. Biol. Chem. 296: 100275. https://doi.org/10.1016/j.jbc.2021.100275.Search in Google Scholar PubMed PubMed Central
Wollenberg, M.S., Claesen, J., Escapa, I.F., Aldridge, K.L., Fischbach, M.A., Lemon, K.P., and Kolter, R. (2014). Propionibacterium produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio 5: e012866–e1314. https://doi.org/10.1128/mBio.01286-14.Search in Google Scholar PubMed PubMed Central
Yukl, E.T., Jepkorir, G., Alontaga, A.Y., Pautsch, L., Rodriguez, J.C., Rivera, M., and Moënne-Loccoz, P. (2010). Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 49: 6646–6654. https://doi.org/10.1021/bi100692f.Search in Google Scholar PubMed PubMed Central
Zhang, L., Hendrickson, R.C., Meikle, V., Lefkowitz, E.J., Ioerger, T.R., and Niederweis, M. (2020). Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog. 16: e1008337. https://doi.org/10.1371/journal.ppat.1008337.Search in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Heme research – the past, the present and the future
- A primer on heme biosynthesis
- New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
- The role of host heme in bacterial infection
- Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase (AfGcHK) and a diguanylate cyclase (YddV or EcDosC)
- Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase
- Novel insights into heme binding to hemoglobin
- Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
- Assessment of the breadth of binding promiscuity of heme towards human proteins
- Determination of free heme in stored red blood cells with an apo-horseradish peroxidase-based assay
- Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts
Articles in the same Issue
- Frontmatter
- Heme research – the past, the present and the future
- A primer on heme biosynthesis
- New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
- The role of host heme in bacterial infection
- Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase (AfGcHK) and a diguanylate cyclase (YddV or EcDosC)
- Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase
- Novel insights into heme binding to hemoglobin
- Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
- Assessment of the breadth of binding promiscuity of heme towards human proteins
- Determination of free heme in stored red blood cells with an apo-horseradish peroxidase-based assay
- Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts