Abstract
Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.
Funding source: Burroughs Wellcome Fund
Award Identifier / Grant number: Career Award at the Scientific Interface
Acknowledgements
Rebecca Donegan is supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by a Burroughs Wellcome Fund CASI grant to R.K.D.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Aich, A., Freundlich, M., and Vekilov, P.G. (2015). The free heme concentration in healthy human erythrocytes. Blood Cell Mol. Dis. 55: 402–409. https://doi.org/10.1016/j.bcmd.2015.09.003.Suche in Google Scholar PubMed PubMed Central
Akhter, F., Womack, E., Vidal, J.E., Le Breton, Y., Mciver, K.S., Pawar, S., and Eichenbaum, Z. (2020). Hemoglobin stimulates vigorous growth of Streptococcus pneumoniae and shapes the pathogen’s global transcriptome. Sci. Rep. 10: 15202. https://doi.org/10.1038/s41598-020-71910-1.Suche in Google Scholar PubMed PubMed Central
Akhter, F., Womack, E., Vidal, J.E., Le Breton, Y., Mciver, K.S., Pawar, S., and Eichenbaum, Z. (2021). Hemoglobin induces early and robust biofilm development in Streptococcus pneumoniae by a pathway that involves comC but not the cognate comDE two-component system. Infect. Immun. 89: e007799–e820. https://doi.org/10.1128/iai.00779-20.Suche in Google Scholar PubMed PubMed Central
Allen, C.E., Burgos, J.M., and Schmitt, M.P. (2013). Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae. J. Bacteriol. 195: 2852–2863. https://doi.org/10.1128/jb.00244-13.Suche in Google Scholar PubMed PubMed Central
Allen, C.E. and Schmitt, M.P. (2009). HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J. Bacteriol. 191: 2638–2648. https://doi.org/10.1128/jb.01784-08.Suche in Google Scholar
Allen, C.E. and Schmitt, M.P. (2011). Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J. Bacteriol. 193: 5374–5385. https://doi.org/10.1128/jb.05508-11.Suche in Google Scholar
Allen, C.E. and Schmitt, M.P. (2015). Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J. Bacteriol. 197: 553–562. https://doi.org/10.1128/jb.02413-14.Suche in Google Scholar PubMed PubMed Central
Amorim, G.C.D., Prochnicka-Chalufour, A., Delepelaire, P., Lefèvre, J., Simenel, C., Wandersman, C., Delepierre, M., and Izadi-Pruneyre, N. (2013). The structure of HasB reveals a new class of TonB protein fold. PLoS One 8: e58964. https://doi.org/10.1371/journal.pone.0058964.Suche in Google Scholar PubMed PubMed Central
Anzaldi, L.L. and Skaar, E.P. (2010). Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78: 4977–4989. https://doi.org/10.1128/iai.00613-10.Suche in Google Scholar
Ates, L.S. (2020). New insights into the mycobacterial Pe and PPE proteins provide a framework for future research. Mol. Microbiol. 113: 4–21. https://doi.org/10.1111/mmi.14409.Suche in Google Scholar PubMed PubMed Central
Barañano, D.E., Rao, M., Ferris, C.D., and Snyder, S.H. (2002). Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. USA 99: 16093–16098. https://doi.org/10.1073/pnas.252626999.Suche in Google Scholar PubMed PubMed Central
Bibb, L.A., Kunkle, C.A., and Schmitt, M.P. (2007). The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect. Immun. 75: 2421–2431. https://doi.org/10.1128/iai.01821-06.Suche in Google Scholar
Bozza, M.T. and Jeney, V. (2020). Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs. Front. Immunol. 11: 1323. https://doi.org/10.3389/fimmu.2020.01323.Suche in Google Scholar PubMed PubMed Central
Briaud, P., Camus, L., Bastien, S., Doléans-Jordheim, A., Vandenesch, F., and Moreau, K. (2019). Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci. Rep. 9: 16564. https://doi.org/10.1038/s41598-019-52975-z.Suche in Google Scholar PubMed PubMed Central
Celis, A.I. and Dubois, J.L. (2019). Making and breaking heme. Curr. Opin. Struct. Biol. 59: 19–28. https://doi.org/10.1016/j.sbi.2019.01.006.Suche in Google Scholar PubMed PubMed Central
Ch’ng, J.-H., Muthu, M., Chong, K.K.L., Wong, J.J., Tan, C.A.Z., Koh, Z.J.S., Lopez, D., Matysik, A., Nair, Z.J., Barkham, T., et al.. (2022). Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. ISME J. 16: 2015–2026. https://doi.org/10.1038/s41396-022-01248-1.Suche in Google Scholar PubMed PubMed Central
Chao, A., Sieminski, P.J., Owens, C.P., and Goulding, C.W. (2018). Iron acquisition in Mycobacterium tuberculosis. Chem. Rev. 119: 1193–1220. https://doi.org/10.1021/acs.chemrev.8b00285.Suche in Google Scholar PubMed PubMed Central
Chim, N., Iniguez, A., Nguyen, T.Q., and Goulding, C.W. (2010). Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395: 595–608. https://doi.org/10.1016/j.jmb.2009.11.025.Suche in Google Scholar PubMed PubMed Central
Choby, J.E., Grunenwald, C.M., Celis, A.I., Gerdes, S.Y., Dubois, J.L., and Skaar, E.P. (2018). Staphylococcus aureus HemX modulates glutamyl-tRNA reductase abundance to regulate heme biosynthesis. mBio 9: e022877–e2317. https://doi.org/10.1128/mbio.02287-17.Suche in Google Scholar PubMed PubMed Central
Choby, J.E. and Skaar, E.P. (2016). Heme synthesis and acquisition in bacterial pathogens. J. Mol. Biol. 428: 3408–3428. https://doi.org/10.1016/j.jmb.2016.03.018.Suche in Google Scholar PubMed PubMed Central
Conroy, B.S., Grigg, J.C., Kolesnikov, M., Morales, L.D., and Murphy, M.E.P. (2019). Staphylococcus aureus heme and siderophore-iron acquisition pathways. Biometals 32: 409–424. https://doi.org/10.1007/s10534-019-00188-2.Suche in Google Scholar PubMed
Contreras, H., Chim, N., Credali, A., and Goulding, C.W. (2014). Heme uptake in bacterial pathogens. Curr. Opin. Chem. Biol. 19: 34–41. https://doi.org/10.1016/j.cbpa.2013.12.014.Suche in Google Scholar PubMed PubMed Central
Cornforth, D.M., Dees, J.L., Ibberson, C.B., Huse, H.K., Mathiesen, I.H., Kirketerp-Møller, K., Wolcott, R.D., Rumbaugh, K.P., Bjarnsholt, T., and Whiteley, M. (2018). Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl. Acad. Sci. USA 115: E5125–E5134. https://doi.org/10.1073/pnas.1717525115.Suche in Google Scholar PubMed PubMed Central
Costa, D.L., Amaral, E.P., Andrade, B.B., and Sher, A. (2020). Modulation of inflammation and immune responses by heme oxygenase-1: implications for infection with intracellular pathogens. Antioxidants 9: 1205. https://doi.org/10.3390/antiox9121205.Suche in Google Scholar PubMed PubMed Central
Costa, D.L., Namasivayam, S., Amaral, E.P., Arora, K., Chao, A., Mittereder, L.R., Maiga, M., Boshoff, H.I., Barry, C.E.III, and Goulding, C.W. (2016). Pharmacological inhibition of host heme oxygenase-1 suppresses Mycobacterium tuberculosis infection in vivo by a mechanism dependent on T lymphocytes. mBio 7: e016755–e1716. https://doi.org/10.1128/mbio.01675-16.Suche in Google Scholar PubMed PubMed Central
Dailey, H.A., Dailey, T.A., Gerdes, S., Jahn, D., Jahn, M., O’brian, M.R., and Warren, M.J. (2017). Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81: e000488–e116. https://doi.org/10.1128/mmbr.00048-16.Suche in Google Scholar PubMed PubMed Central
Dailey, H.A., Gerdes, S., Dailey, T.A., Burch, J.S., and Phillips, J.D. (2015). Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl. Acad. Sci. USA 112: 2210–2215. https://doi.org/10.1073/pnas.1416285112.Suche in Google Scholar PubMed PubMed Central
Dailey, T.A., Boynton, T.O., Albetel, A.-N., Gerdes, S., Johnson, M.K., and Dailey, H.A. (2010). Discovery and characterization of HemQ an essential heme biosynthetic pathway component. J. Biol. Chem. 285: 25978–25986. https://doi.org/10.1074/jbc.m110.142604.Suche in Google Scholar
Dauros-Singorenko, P., Wiles, S., and Swift, S. (2020). Staphylococcus aureus biofilms and their response to a relevant in vivo iron source. Front. Microbiol. 11: 509525. https://doi.org/10.3389/fmicb.2020.509525.Suche in Google Scholar PubMed PubMed Central
Deniau, C., Gilli, R., Izadi-Pruneyre, N., Létoffé, S., Delepierre, M., Wandersman, C., Briand, C., and Lecroisey, A. (2003). Thermodynamics of heme binding to the HasASM hemophore: effect of mutations at three key residues for heme uptake. Biochemistry 42: 10627–10633. https://doi.org/10.1021/bi030015k.Suche in Google Scholar PubMed
Dent, A.T., Mouriño, S., Huang, W., and Wilks, A. (2019). Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J. Biol. Chem. 294: 2771–5555. https://doi.org/10.1074/jbc.ra118.006185.Suche in Google Scholar
Dent, A.T. and Wilks, A. (2020). Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane receptor HasR to extracellular heme sensing and transport. J. Biol. Chem. 295: 10456–10467. https://doi.org/10.1074/jbc.ra120.014081.Suche in Google Scholar PubMed PubMed Central
Donegan, R.K., Moore, C.M., Hanna, D.A., and Reddi, A.R. (2019). Handling heme: the mechanisms underlying the movement of heme within and between cells. Free Radic. Biol. Med. 133: 88–100. https://doi.org/10.1016/j.freeradbiomed.2018.08.005.Suche in Google Scholar PubMed PubMed Central
Dutra, F.F. and Bozza, M.T. (2014). Heme on innate immunity and inflammation. Front. Pharmacol. 5: 115. https://doi.org/10.3389/fphar.2014.00115.Suche in Google Scholar PubMed PubMed Central
Ellis-Guardiola, K., Mahoney, B.J., and Clubb, R.T. (2021). NEAr transporter (NEAT) domains: unique surface displayed heme chaperones that enable Gram-positive bacteria to capture heme-iron from hemoglobin. Front. Microbiol. 11: 607679. https://doi.org/10.3389/fmicb.2020.607679.Suche in Google Scholar PubMed PubMed Central
Fernandez, P.L., Dutra, F.F., Alves, L., Figueiredo, R.T., Mourão-Sa, D., Fortes, G.B., Bergstrand, S., Lönn, D., Cevallos, R.R., and Pereira, R.M. (2010). Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J. Biol. Chem. 285: 32844–32851. https://doi.org/10.1074/jbc.m110.146076.Suche in Google Scholar PubMed PubMed Central
Fontán, P.A., Aris, V., Alvarez, M.E., Ghanny, S., Cheng, J., Soteropoulos, P., Trevani, A., Pine, R., and Smith, I. (2008). Mycobacterium tuberculosis sigma factor E regulon modulates the host inflammatory response. J. Infect. Dis. 198: 877–885. https://doi.org/10.1086/591098.Suche in Google Scholar PubMed
Frankenberg, L., Brugna, M., and Hederstedt, L. (2002). Enterococcus faecalis heme-dependent catalase. Am Soc Microbiol 184: 6351–6356.10.1128/JB.184.22.6351-6356.2002Suche in Google Scholar PubMed PubMed Central
Frunzke, J., Gätgens, C., Brocker, M., and Bott, M. (2011). Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J. Bacteriol. 193: 1212–1221. https://doi.org/10.1128/jb.01130-10.Suche in Google Scholar PubMed PubMed Central
Ghigo, J.-M., Letoffe, S., and Wandersman, C. (1997). A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli. J. Bacteriol. 179: 3572–3579. https://doi.org/10.1128/jb.179.11.3572-3579.1997.Suche in Google Scholar PubMed PubMed Central
Ghio, A.J., Roggli, V.L., Soukup, J.M., Richards, J.H., Randell, S.H., and Muhlebach, M.S. (2013). Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. J. Cyst. Fibros. 12: 390–398. https://doi.org/10.1016/j.jcf.2012.10.010.Suche in Google Scholar PubMed
Glasser, N.R., Hunter, R.C., Liou, T.G., Newman, D.K., and Investigators, M.W.C.C. (2019). Refinement of metabolite detection in cystic fibrosis sputum reveals heme correlates with lung function decline. PLoS One 14: e0226578. https://doi.org/10.1371/journal.pone.0226578.Suche in Google Scholar PubMed PubMed Central
Hammer, N.D., Reniere, M.L., Cassat, J.E., Zhang, Y., Hirsch, A.O., Indriati Hood, M., and Skaar, E.P. (2013). Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 4: e002411–e313. https://doi.org/10.1128/mBio.00241-13.Suche in Google Scholar PubMed PubMed Central
Hammer, N.D. and Skaar, E.P. (2011). Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu. Rev. Microbiol. 65: 129–147. https://doi.org/10.1146/annurev-micro-090110-102851.Suche in Google Scholar PubMed PubMed Central
Hooda, J., Shah, A., and Zhang, L. (2014). Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients 6: 1080–1102. https://doi.org/10.3390/nu6031080.Suche in Google Scholar PubMed PubMed Central
Hvidberg, V., Maniecki, M.B., Jacobsen, C., Højrup, P., Møller, H.J., and Moestrup, S.K. (2005). Identification of the receptor scavenging hemopexin-heme complexes. Blood 106: 2572–2579. https://doi.org/10.1182/blood-2005-03-1185.Suche in Google Scholar PubMed
Ibberson, C.B., Whiteley, M., and Sperandio, V. (2019). The Staphylococcus aureus transcriptome during cystic fibrosis lung infection. mBio 10: e027744–e2819. https://doi.org/10.1128/mbio.02774-19.Suche in Google Scholar
Jepkorir, G., Rodríguez, J.C., Rui, H., Im, W., Lovell, S., Battaile, K.P., Alontaga, A.Y., Yukl, E.T., Moënne-Loccoz, P., and Rivera, M. (2010). Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa. J. Am. Chem. Soc. 132: 9857–9872. https://doi.org/10.1021/ja103498z.Suche in Google Scholar PubMed PubMed Central
Jones, C.M. and Niederweis, M. (2011). Mycobacterium tuberculosis can utilize heme as an iron source. J. Bacteriol. 193: 1767–1770. https://doi.org/10.1128/jb.01312-10.Suche in Google Scholar
Knippel, R.J., Wexler, A.G., Miller, J.M., Beavers, W.N., Weiss, A., De Crécy-Lagard, V., Edmonds, K.A., Giedroc, D.P., and Skaar, E.P. (2020). Clostridioides difficile senses and hijacks host heme for incorporation into an oxidative stress defense system. Cell Host Microbe 28: 411–421.e6. https://doi.org/10.1016/j.chom.2020.05.015.Suche in Google Scholar PubMed PubMed Central
Lansky, I.B., Lukat-Rodgers, G.S., Block, D., Rodgers, K.R., Ratliff, M., and Wilks, A. (2006). The cytoplasmic heme-binding protein (PhuS) from the heme uptake system of Pseudomonas aeruginosa is an intracellular heme-trafficking protein to the δ-regioselective heme oxygenase. J. Biol. Chem. 281: 13652–13662. https://doi.org/10.1074/jbc.m600824200.Suche in Google Scholar
Lee, T.-S. and Chau, L.-Y. (2002). Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat. Med. 8: 240–246. https://doi.org/10.1038/nm0302-240.Suche in Google Scholar PubMed
Letoffe, S., Ghigo, J., and Wandersman, C. (1994). Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc. Natl. Acad. Sci. USA 91: 9876–9880. https://doi.org/10.1073/pnas.91.21.9876.Suche in Google Scholar PubMed PubMed Central
Liu, M., Ferrandez, Y., Bouhsira, E., Monteil, M., Franc, M., Boulouis, H.-J., and Biville, F. (2012). Heme binding proteins of Bartonella henselae are required when undergoing oxidative stress during cell and Flea invasion. PLoS One 7: e48408. https://doi.org/10.1371/journal.pone.0048408.Suche in Google Scholar PubMed PubMed Central
Llamas, M.A., Imperi, F., Visca, P., and Lamont, I.L. (2014). Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol. Rev. 38: 569–597. https://doi.org/10.1111/1574-6976.12078.Suche in Google Scholar PubMed
Mack, J., Vermeiren, C., Heinrichs, D.E., and Stillman, M.J. (2004). In vivo heme scavenging by Staphylococcus aureus IsdC and IsdE proteins. Biochem. Biophys. Res. Commun. 320: 781–788. https://doi.org/10.1016/j.bbrc.2004.06.025.Suche in Google Scholar PubMed
Marvig, R.L., Damkiær, S., Khademi, S.H., Markussen, T.M., Molin, S., and Jelsbak, L. (2014). Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 5: e009666–e1014. https://doi.org/10.1128/mBio.00966-14.Suche in Google Scholar PubMed PubMed Central
Matthews, S.J., Pacholarz, K.J., France, A.P., Jowitt, T.A., Hay, S., Barran, P.E., and Munro, A.W. (2019). MhuD from Mycobacterium tuberculosis: probing a dual role in heme storage and degradation. ACS Infect. Dis. 5: 1855–1866. https://doi.org/10.1021/acsinfecdis.9b00181.Suche in Google Scholar PubMed
Mayfield, J.A., Hammer, N.D., Kurker, R.C., Chen, T.K., Ojha, S., Skaar, E.P., and Dubois, J.L. (2013). The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype. J. Biol. Chem. 288: 23488–23504. https://doi.org/10.1074/jbc.m112.442335.Suche in Google Scholar
Mazmanian, S.K., Skaar, E.P., Gaspar, A.H., Humayun, M., Gornicki, P., Jelenska, J., Joachmiak, A., Missiakas, D.M., and Schneewind, O. (2003). Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299: 906–909. https://doi.org/10.1126/science.1081147.Suche in Google Scholar PubMed
Mitra, A., Ko, Y.-H., Cingolani, G., and Niederweis, M. (2019). Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nat. Commun. 10: 4260. https://doi.org/10.1038/s41467-019-12109-5.Suche in Google Scholar PubMed PubMed Central
Mitra, A., Speer, A., Lin, K., Ehrt, S., and Niederweis, M. (2017). PPE surface proteins are required for heme utilization by Mycobacterium tuberculosis. mBio 8: e017200–e1816. https://doi.org/10.1128/mbio.01720-16.Suche in Google Scholar PubMed PubMed Central
Morgan, W.T., Heng Liem, H., Sutor, R.P., and Muller-Eberhard, U. (1976). Transfer of heme from heme-albumin to hemopexin. Biochim. Biophys. Acta Gen. Subj. 444: 435–445. https://doi.org/10.1016/0304-4165(76)90387-1.Suche in Google Scholar PubMed
Mouriño, S., Giardina, B.J., Reyes-Caballero, H., and Wilks, A. (2016). Metabolite-driven regulation of heme uptake by the biliverdin IXβ/δ-selective heme oxygenase (HemO) of Pseudomonas aeruginosa. J. Biol. Chem. 291: 20503–20515. https://doi.org/10.1074/jbc.M116.728527.Suche in Google Scholar PubMed PubMed Central
Mouriño, S. and Wilks, A. (2021). Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv. Microb. Physiol. 79: 89–132.10.1016/bs.ampbs.2021.07.004Suche in Google Scholar PubMed PubMed Central
Muller-Eberhard, U. (1970). Hemopexin. N. Engl. J. Med. 283: 1090–1094. https://doi.org/10.1056/nejm197011122832007.Suche in Google Scholar
Nielsen, M.J., Petersen, S.V., Jacobsen, C., Thirup, S., Enghild, J.J., Graversen, J.H., and Moestrup, S.K. (2007). A unique loop extension in the serine protease domain of haptoglobin is essential for CD163 recognition of the haptoglobin-hemoglobin complex. J. Biol. Chem. 282: 1072–1079. https://doi.org/10.1074/jbc.m605684200.Suche in Google Scholar PubMed
Nobles, C.L. and Maresso, A.W. (2011). The theft of host heme by Gram-positive pathogenic bacteria. Metallomics 3: 788–796. https://doi.org/10.1039/c1mt00047k.Suche in Google Scholar PubMed
O’neill, M.J. and Wilks, A. (2013). The P. aeruginosa heme binding protein PhuS is a heme oxygenase Titratable regulator of heme uptake. ACS Chem. Biol. 8: 1794–1802.10.1021/cb400165bSuche in Google Scholar PubMed PubMed Central
Ochsner, U.A., Johnson, Z., and Vasil, M.L. (2000). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146: 185–198. https://doi.org/10.1099/00221287-146-1-185.Suche in Google Scholar PubMed
Otterbein, L.E., Bach, F.H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R.J., Flavell, R.A., and Choi, A.M. (2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6: 422–428. https://doi.org/10.1038/74680.Suche in Google Scholar PubMed
Owens, C.P., Chim, N., and Goulding, C.W. (2013a). Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Future Med. Chem. 5: 1391–1403. https://doi.org/10.4155/fmc.13.109.Suche in Google Scholar PubMed PubMed Central
Owens, C.P., Chim, N., Graves, A.B., Harmston, C.A., Iniguez, A., Contreras, H., Liptak, M.D., and Goulding, C.W. (2013b). The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J. Biol. Chem. 288: 21714–21728. https://doi.org/10.1074/jbc.m113.453076.Suche in Google Scholar
Owens, C.P., Du, J., Dawson, J.H., and Goulding, C.W. (2012). Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51: 1518–1531. https://doi.org/10.1021/bi2018305.Suche in Google Scholar PubMed PubMed Central
Parish, T., Schaeffer, M., Roberts, G., and Duncan, K. (2005). HemZ is essential for heme biosynthesis in Mycobacterium tuberculosis. Tuberculosis 85: 197–204. https://doi.org/10.1016/j.tube.2005.01.002.Suche in Google Scholar PubMed
Philippidis, P., Mason, J., Evans, B., Nadra, I., Taylor, K., Haskard, D., and Landis, R. (2004). Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 94: 119–126. https://doi.org/10.1161/01.res.0000109414.78907.f9.Suche in Google Scholar PubMed
Quaye, I.K. (2008). Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 102: 735–742. https://doi.org/10.1016/j.trstmh.2008.04.010.Suche in Google Scholar PubMed
Runyen-Janecky, L.J. (2013). Role and regulation of heme iron acquisition in Gram-negative pathogens. Front. Cell. Infect. Microbiol. 3: 55. https://doi.org/10.3389/fcimb.2013.00055.Suche in Google Scholar PubMed PubMed Central
Severance, S. and Hamza, I. (2009). Trafficking of heme and porphyrins in metazoa. Chem. Rev. 109: 4596–4616. https://doi.org/10.1021/cr9001116.Suche in Google Scholar PubMed PubMed Central
Shaver, C.M., Upchurch, C.P., Janz, D.R., Grove, B.S., Putz, N.D., Wickersham, N.E., Dikalov, S.I., Ware, L.B., and Bastarache, J.A. (2016). Cell-free hemoglobin: a novel mediator of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 310: L532–L541. https://doi.org/10.1152/ajplung.00155.2015.Suche in Google Scholar PubMed PubMed Central
Silva, G., Jeney, V., Chora, Â., Larsen, R., Balla, J., and Soares, M.P. (2009). Oxidized hemoglobin is an endogenous proinflammatory agonist that targets vascular endothelial cells. J. Biol. Chem. 284: 29582–29595. https://doi.org/10.1074/jbc.m109.045344.Suche in Google Scholar PubMed PubMed Central
Singla, S., Sysol, J.R., Dille, B., Jones, N., Chen, J., and Machado, R.F. (2017). Hemin causes lung microvascular endothelial barrier dysfunction by necroptotic cell death. Am. J. Respir. Cell Mol. Biol. 57: 307–314. https://doi.org/10.1165/rcmb.2016-0287oc.Suche in Google Scholar PubMed PubMed Central
Skaar, E.P., Humayun, M., Bae, T., Debord, K.L., and Schneewind, O. (2004). Iron-source preference of Staphylococcus aureus infections. Science 305: 1626–1628. https://doi.org/10.1126/science.1099930.Suche in Google Scholar PubMed
Smith, A. and Mcculloh, R.J. (2015). Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front. Physiol. 6: 187. https://doi.org/10.3389/fphys.2015.00187.Suche in Google Scholar PubMed PubMed Central
Smith, A.D. and Wilks, A. (2012). Extracellular heme uptake and the challenges of bacterial cell membranes. Curr. Top. Membr. 69: 359–392. https://doi.org/10.1016/b978-0-12-394390-3.00013-6.Suche in Google Scholar
Smith, A.D. and Wilks, A. (2015). Differential contributions of the outer membrane receptors PhuR and HasR to heme acquisition in Pseudomonas aeruginosa. J. Biol. Chem. 290: 7756–7766. https://doi.org/10.1074/jbc.m114.633495.Suche in Google Scholar
Soares, M.P. and Bach, F.H. (2009). Heme oxygenase-1: from biology to therapeutic potential. Trends Mol. Med. 15: 50–58. https://doi.org/10.1016/j.molmed.2008.12.004.Suche in Google Scholar PubMed
Speziali, C.D., Dale, S.E., Henderson, J.A., Vinés, E.D., and Heinrichs, D.E. (2006). Requirement of Staphylococcus aureus ATP-binding cassette-ATPase FhuC for iron-restricted growth and evidence that it functions with more than one iron transporter. J. Bacteriol. 188: 2048–2055. https://doi.org/10.1128/jb.188.6.2048-2055.2006.Suche in Google Scholar PubMed PubMed Central
Spittaels, K.-J., Van Uytfanghe, K., Zouboulis, C.C., Stove, C., Crabbé, A., and Coenye, T. (2021). Porphyrins produced by acneic Cutibacterium acnes strains activate the inflammasome by inducing K+ leakage. iScience 24: 102575. https://doi.org/10.1016/j.isci.2021.102575.Suche in Google Scholar PubMed PubMed Central
Stauff, D.L. and Skaar, E.P. (2009). The heme sensor system of Staphylococcus aureus. Contrib. Microbiol. 16: 120–135. https://doi.org/10.1159/000219376.Suche in Google Scholar PubMed PubMed Central
Tong, Y. and Guo, M. (2007). Cloning and characterization of a novel periplasmic heme-transport protein from the human pathogen Pseudomonas aeruginosa. J. Biol. Inorg Chem. 12: 735–750. https://doi.org/10.1007/s00775-007-0226-x.Suche in Google Scholar PubMed
Torres, V.J., Stauff, D.L., Pishchany, G., Bezbradica, J.S., Gordy, L.E., Iturregui, J., Anderson, K.L., Dunman, P.M., Joyce, S., and Skaar, E.P. (2007). A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1: 109–119. https://doi.org/10.1016/j.chom.2007.03.001.Suche in Google Scholar PubMed PubMed Central
Tullius, M.V., Harmston, C.A., Owens, C.P., Chim, N., Morse, R.P., Mcmath, L.M., Iniguez, A., Kimmey, J.M., Sawaya, M.R., Whitelegge, J.P., et al.. (2011). Discovery and characterization of a unique mycobacterial heme acquisition system. Proc. Natl. Acad. Sci. USA 108: 5051–5056. https://doi.org/10.1073/pnas.1009516108.Suche in Google Scholar PubMed PubMed Central
Tullius, M.V., Nava, S., and Horwitz, M.A. (2019). PPE37 is essential for Mycobacterium tuberculosis heme-iron acquisition (HIA), and a defective PPE37 in Mycobacterium bovis BCG prevents HIA. Infect. Immun. 87: e005400–e618. https://doi.org/10.1128/IAI.00540-18.Suche in Google Scholar PubMed PubMed Central
Verstraete, M.M., Morales, L.D., Kobylarz, M.J., Loutet, S.A., Laakso, H.A., Pinter, T.B., Stillman, M.J., Heinrichs, D.E., and Murphy, M.E.P. (2019). The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. J. Biol. Chem. 294: 11622–11636. https://doi.org/10.1074/jbc.ra119.007757.Suche in Google Scholar
Wang, Q., Boshoff, H.I.M., Harrison, J.R., Ray, P.C., Green, S.R., Wyatt, P.G., and Barry, C.E. (2020). PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science 367: 1147–1151. https://doi.org/10.1126/science.aav5912.Suche in Google Scholar PubMed
Whitby, P.W., Seale, T.W., Vanwagoner, T.M., Morton, D.J., and Stull, T.L. (2009). The iron/heme regulated genes of Haemophilus influenzae: comparative transcriptional profiling as a tool to define the species core modulon. BMC Genom. 10: 6. https://doi.org/10.1186/1471-2164-10-6.Suche in Google Scholar PubMed PubMed Central
Wilson, T., Mouriño, S., and Wilks, A. (2021). The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus. J. Biol. Chem. 296: 100275. https://doi.org/10.1016/j.jbc.2021.100275.Suche in Google Scholar PubMed PubMed Central
Wollenberg, M.S., Claesen, J., Escapa, I.F., Aldridge, K.L., Fischbach, M.A., Lemon, K.P., and Kolter, R. (2014). Propionibacterium produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. mBio 5: e012866–e1314. https://doi.org/10.1128/mBio.01286-14.Suche in Google Scholar PubMed PubMed Central
Yukl, E.T., Jepkorir, G., Alontaga, A.Y., Pautsch, L., Rodriguez, J.C., Rivera, M., and Moënne-Loccoz, P. (2010). Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 49: 6646–6654. https://doi.org/10.1021/bi100692f.Suche in Google Scholar PubMed PubMed Central
Zhang, L., Hendrickson, R.C., Meikle, V., Lefkowitz, E.J., Ioerger, T.R., and Niederweis, M. (2020). Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog. 16: e1008337. https://doi.org/10.1371/journal.ppat.1008337.Suche in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Heme research – the past, the present and the future
- A primer on heme biosynthesis
- New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
- The role of host heme in bacterial infection
- Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase (AfGcHK) and a diguanylate cyclase (YddV or EcDosC)
- Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase
- Novel insights into heme binding to hemoglobin
- Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
- Assessment of the breadth of binding promiscuity of heme towards human proteins
- Determination of free heme in stored red blood cells with an apo-horseradish peroxidase-based assay
- Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts
Artikel in diesem Heft
- Frontmatter
- Heme research – the past, the present and the future
- A primer on heme biosynthesis
- New roles for GAPDH, Hsp90, and NO in regulating heme allocation and hemeprotein function in mammals
- The role of host heme in bacterial infection
- Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase (AfGcHK) and a diguanylate cyclase (YddV or EcDosC)
- Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase
- Novel insights into heme binding to hemoglobin
- Extracellular hemin is a reverse use-dependent gating modifier of cardiac voltage-gated Na+ channels
- Assessment of the breadth of binding promiscuity of heme towards human proteins
- Determination of free heme in stored red blood cells with an apo-horseradish peroxidase-based assay
- Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts