Startseite Iron overload and altered iron metabolism in ovarian cancer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Iron overload and altered iron metabolism in ovarian cancer

  • Stephanie Rockfield , Joseph Raffel , Radhe Mehta , Nabila Rehman und Meera Nanjundan EMAIL logo
Veröffentlicht/Copyright: 23. Juni 2017

Abstract

Iron is an essential element required for many processes within the cell. Dysregulation in iron homeostasis due to iron overload is detrimental. This nutrient is postulated to contribute to the initiation of cancer; however, the mechanisms by which this occurs remain unclear. Defining how iron promotes the development of ovarian cancers from precursor lesions is essential for developing novel therapeutic strategies. In this review, we discuss (1) how iron overload conditions may initiate ovarian cancer development, (2) dysregulated iron metabolism in cancers, (3) the interplay between bacteria, iron, and cancer, and (4) chemotherapeutic strategies targeting iron metabolism in cancer patients.

Acknowledgments

This work was supported by funding from the National Cancer Institute to M.N. (R21 CA178468-01). We apologize to those in this area of research whose work we have not cited.

References

Ahmed, N., Oliva, K.T., Barker, G., Hoffmann, P., Reeve, S., Smith, I.A., Quinn, M.A., and Rice, G.E. (2005). Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics 5, 4625–4636.10.1002/pmic.200401321Suche in Google Scholar PubMed

Alen, P., Claessens, F., Schoenmakers, E., Swinnen, J.V., Verhoeven, G., Rombauts, W., and Peeters, B. (1999). Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1α with multiple steroid receptors and identification of an internally deleted ELE1β isoform. Mol. Endocrinol. 13, 117–128.10.1210/mend.13.1.0214Suche in Google Scholar PubMed

Anderson, G.J., Frazer, D.M., Wilkins, S.J., Becker, E.M., Millard, K.N., Murphy, T.L., McKie, A.T., and Vulpe, C.D. (2002). Relationship between intestinal iron-transporter expression, hepatic hepcidin levels and the control of iron absorption. Biochem. Soc. Trans. 30, 724–726.10.1042/bst0300724Suche in Google Scholar PubMed

Anderson, E.R., Taylor, M., Xue, X., Ramakrishnan, S.K., Martin, A., Xie, L., Bredell, B.X., Gardenghi, S., Rivella, S., and Shah, Y.M. (2013). Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia. Proc. Natl. Acad Sci. USA 110, E4922–4930.10.1073/pnas.1314197110Suche in Google Scholar PubMed PubMed Central

Andrews, N.C. (1999). Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995.10.1038/npg.els.0006072Suche in Google Scholar

Assi, T.B. and Baz, E. (2014). Current applications of therapeutic phlebotomy. Blood Transfus. 12 (Suppl 1), s75–83.Suche in Google Scholar

Bahar-Shany, K., Brand, H., Sapoznik, S., Jacob-Hirsch, J., Yung, Y., Korach, J., Perri, T., Cohen, Y., Hourvitz, A., and Levanon, K. (2014). Exposure of fallopian tube epithelium to follicular fluid mimics carcinogenic changes in precursor lesions of serous papillary carcinoma. Gynecol. Oncol. 132, 322–327.10.1016/j.ygyno.2013.12.015Suche in Google Scholar PubMed

Bauckman, K.A., Haller, E., Flores, I., and Nanjundan, M. (2013). Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 4, e592.10.1038/cddis.2013.87Suche in Google Scholar PubMed PubMed Central

Bauckman, K., Haller, E., Taran, N., Rockfield, S., Ruiz-Rivera, A., and Nanjundan, M. (2015). Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem. J. 466, 401–413.10.1042/BJ20140878Suche in Google Scholar PubMed PubMed Central

Bauckman, K.A. and Mysorekar, I.U. (2016). Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 12, 850–863.10.1080/15548627.2016.1160176Suche in Google Scholar PubMed PubMed Central

Bellelli, R., Castellone, M.D., Guida, T., Limongello, R., Dathan, N.A., Merolla, F., Cirafici, A.M., Affuso, A., Masai, H., Costanzo, V., et al. (2014). NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol. Cell 55, 123–137.10.1016/j.molcel.2014.04.031Suche in Google Scholar PubMed

Bellelli, R., Federico, G., Matte, A., Colecchia, D., Iolascon, A., Chiariello, M., Santoro, M., De Franceschi, L., and Carlomagno, F. (2016). NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 14, 411–421.10.1016/j.celrep.2015.12.065Suche in Google Scholar PubMed

Benaglia, L., Paffoni, A., Mangiarini, A., Restelli, L., Bettinardi, N., Somigliana, E., Vercellini, P., and Fedele, L. (2015). Intrafollicular iron and ferritin in women with ovarian endometriomas. Acta Obstet. Gynecol. Scand. 94, 646–653.10.1111/aogs.12647Suche in Google Scholar PubMed

Berg, D. and Youdim, M.B. (2006). Role of iron in neurodegenerative disorders. Top Magn. Reson. Imaging 17, 5–17.10.1097/01.rmr.0000245461.90406.adSuche in Google Scholar PubMed

Blanchette, N.L., Manz, D.H., Torti, F.M., and Torti, S.V. (2016). Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev. Hematol. 9, 169–186.10.1586/17474086.2016.1124757Suche in Google Scholar PubMed PubMed Central

Brown, S.B. and Hankinson, S.E. (2015). Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids 99, 8–10.10.1016/j.steroids.2014.12.013Suche in Google Scholar PubMed

Byrne, S.L., Chasteen, N.D., Steere, A.N., and Mason, A.B. (2010). The unique kinetics of iron release from transferrin: the role of receptor, lobe-lobe interactions, and salt at endosomal pH. J. Mol. Biol. 396, 130–140.10.1016/j.jmb.2009.11.023Suche in Google Scholar PubMed PubMed Central

Calzolari, A., Oliviero, I., Deaglio, S., Mariani, G., Biffoni, M., Sposi, N.M., Malavasi, F., Peschle, C., and Testa, U. (2007). Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol. Dis. 39, 82–91.10.1016/j.bcmd.2007.02.003Suche in Google Scholar PubMed

Canonne-Hergaux, F., Gruenheid, S., Ponka, P., and Gros, P. (1999). Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93, 4406–4417.10.1182/blood.V93.12.4406Suche in Google Scholar

Cavalieri, E.L. and Rogan, E.G. (2016). Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin. Transl. Med. 5, 12.10.1186/s40169-016-0088-3Suche in Google Scholar PubMed PubMed Central

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L., Larsson, E., et al. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404.10.1158/2159-8290.CD-12-0095Suche in Google Scholar PubMed PubMed Central

Chase, D., Goulder, A., Zenhausern, F., Monk, B., and Herbst-Kralovetz, M. (2015). The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol. Oncol. 138, 190–200.10.1016/j.ygyno.2015.04.036Suche in Google Scholar PubMed

Chifman, J., Laubenbacher, R., and Torti, S.V. (2014). A systems biology approach to iron metabolism. Adv. Exp. Med. Biol. 844, 201–225.10.1007/978-1-4939-2095-2_10Suche in Google Scholar PubMed PubMed Central

Chornokur, G., Lin, H.Y., Tyrer, J.P., Lawrenson, K., Dennis, J., Amankwah, E.K., Qu, X., Tsai, Y.Y., Jim, H.S., Chen, Z., et al. (2015). Common genetic variation in cellular transport genes and epithelial ovarian cancer (EOC) Risk. PLoS One 10, e0128106.10.1371/journal.pone.0128106Suche in Google Scholar PubMed PubMed Central

Da Broi, M.G., de Albuquerque, F.O., de Andrade, A.Z., Cardoso, R.L., Jordao Jr, A.A., and Navarro, P.A. (2016). Increased concentration of 8-hydroxy-2’-deoxyguanosine in follicular fluid of infertile women with endometriosis. Cell Tissue Res. 366, 231–242.10.1007/s00441-016-2428-4Suche in Google Scholar PubMed

Daniels, T.R., Delgado, T., Rodriguez, J.A., Helguera, G., and Penichet, M.L. (2006). The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 121, 144–158.10.1016/j.clim.2006.06.010Suche in Google Scholar PubMed

Defrere, S., Van Langendonckt, A., Vaesen, S., Jouret, M., Gonzalez Ramos, R., Gonzalez, D., and Donnez, J. (2006). Iron overload enhances epithelial cell proliferation in endometriotic lesions induced in a murine model. Hum. Reprod. 21, 2810–2816.10.1093/humrep/del261Suche in Google Scholar PubMed

Distante, S., Eikeland, J., Pawar, T., Skinnes, R., Hoie, K., You, P., Morkrid, L., and Eide, L. (2016). Blood removal therapy in hereditary hemochromatosis induces a stress response resulting in improved genome integrity. Transfusion 56, 1435–1441.10.1111/trf.13588Suche in Google Scholar PubMed

Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S. et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072.10.1016/j.cell.2012.03.042Suche in Google Scholar PubMed PubMed Central

Dixon, S.J., Patel, D.N., Welsch, M., Skouta, R., Lee, E.D., Hayano, M., Thomas, A.G., Gleason, C.E., Tatonetti, N.P., Slusher, B.S., et al. (2014). Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523.10.7554/eLife.02523Suche in Google Scholar PubMed PubMed Central

Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S.J., Moynihan, J., Paw, B.H., Drejer, A., Barut, B., Zapata, A., et al. (2000). Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781.10.1038/35001596Suche in Google Scholar PubMed

Dowdle, W.E., Nyfeler, B., Nagel, J., Elling, R.A., Liu, S., Triantafellow, E., Menon, S., Wang, Z., Honda, A., Pardee, G., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079.10.1038/ncb3053Suche in Google Scholar PubMed

Du, M.Q., Carmichael, P.L., and Phillips, D.H. (1994). Induction of activating mutations in the human c-Ha-ras-1 proto-oncogene by oxygen free radicals. Mol. Carcinog. 11, 170–175.10.1002/mc.2940110308Suche in Google Scholar PubMed

Eling, N., Reuter, L., Hazin, J., Hamacher-Brady, A., and Brady, N.R. (2015). Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2, 517–532.10.18632/oncoscience.160Suche in Google Scholar PubMed PubMed Central

Ellermann, M. and Arthur, J.C. (2016). Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med. 2016. doi: 10.1016/j.freeradbiomed.2016.10.489. [Epub ahead of print]10.1016/j.freeradbiomed.2016.10.489.Suche in Google Scholar

Elouil, H., Cardozo, A.K., Eizirik, D.L., Henquin, J.C., and Jonas, J.C. (2005). High glucose and hydrogen peroxide increase c-Myc and haeme-oxygenase 1 mRNA levels in rat pancreatic islets without activating NF-κB. Diabetologia 48, 496–505.10.1007/s00125-004-1664-4Suche in Google Scholar PubMed

Emori, M.M. and Drapkin, R. (2014). The hormonal composition of follicular fluid and its implications for ovarian cancer pathogenesis. Reprod. Biol. Endocrinol. 12, 60.10.1186/1477-7827-12-60Suche in Google Scholar PubMed PubMed Central

Fassl, S., Leisser, C., Huettenbrenner, S., Maier, S., Rosenberger, G., Strasser, S., Grusch, M., Fuhrmann, G., Leuhuber, K., Polgar, D., et al. (2003). Transferrin ensures survival of ovarian carcinoma cells when apoptosis is induced by TNFα, FasL, TRAIL, or Myc. Oncogene 22, 8343–8355.10.1038/sj.onc.1207047Suche in Google Scholar PubMed

Funk, J.L., Oyarzo, J.N., Frye, J.B., Chen, G., Lantz, R.C., Jolad, S.D., Solyom, A.M., and Timmermann, B.N. (2006). Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J. Nat. Prod. 69, 351–355.10.1021/np050327jSuche in Google Scholar PubMed PubMed Central

Gannon, P.O., Medelci, S., Le Page, C., Beaulieu, M., Provencher, D.M., Mes-Masson, A.M., and Santos, M.M. (2011). Impact of hemochromatosis gene (HFE) mutations on epithelial ovarian cancer risk and prognosis. Int. J. Cancer 128, 2326–2334.10.1002/ijc.25577Suche in Google Scholar PubMed PubMed Central

Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1.10.1126/scisignal.2004088Suche in Google Scholar PubMed PubMed Central

Greenshields, A.L., Shepherd, T.G., and Hoskin, D.W. (2017). Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol. Carcinog. 56, 75–93.10.1002/mc.22474Suche in Google Scholar PubMed

Hatcher, H., Planalp, R., Cho, J., Torti, F.M., and Torti, S.V. (2008). Curcumin: from ancient medicine to current clinical trials. Cell Mol. Life Sci. 65, 1631–1652.10.1007/s00018-008-7452-4Suche in Google Scholar PubMed PubMed Central

He, X., Hahn, P., Iacovelli, J., Wong, R., King, C., Bhisitkul, R., Massaro-Giordano, M., and Dunaief, J.L. (2007). Iron homeostasis and toxicity in retinal degeneration. Prog. Retin. Eye Res. 26, 649–673.10.1016/j.preteyeres.2007.07.004Suche in Google Scholar PubMed PubMed Central

Heath, J.L., Weiss, J.M., Lavau, C.P., and Wechsler, D.S. (2013). Iron deprivation in cancer – potential therapeutic implications. Nutrients 5, 2836–2859.10.3390/nu5082836Suche in Google Scholar PubMed PubMed Central

Hogdall, C., Fung, E.T., Christensen, I.J., Nedergaard, L., Engelholm, S.A., Petri, A.L., Risum, S., Lundvall, L., Yip, C., Pedersen, A.T., et al. (2011). A novel proteomic biomarker panel as a diagnostic tool for patients with ovarian cancer. Gynecol. Oncol. 123, 308–313.10.1200/jco.2010.28.15_suppl.5061Suche in Google Scholar

Hou, Y., Zhang, S., Wang, L., Li, J., Qu, G., He, J., Rong, H., Ji, H., and Liu, S. (2012). Estrogen regulates iron homeostasis through governing hepatic hepcidin expression via an estrogen response element. Gene 511, 398–403.10.1016/j.gene.2012.09.060Suche in Google Scholar PubMed

Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., 3rd, Kang, R., and Tang, D. (2016). Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428.10.1080/15548627.2016.1187366Suche in Google Scholar PubMed PubMed Central

Hower, V., Mendes, P., Torti, F.M., Laubenbacher, R., Akman, S., Shulaev, V., and Torti, S.V. (2009). A general map of iron metabolism and tissue-specific subnetworks. Mol. Biosyst. 5, 422–443.10.1039/b816714cSuche in Google Scholar PubMed PubMed Central

Huang, H.S., Chu, S.C., Hsu, C.F., Chen, P.C., Ding, D.C., Chang, M.Y., and Chu, T.Y. (2015). Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis 36, 1419–1428.10.1093/carcin/bgv132Suche in Google Scholar PubMed

Inati, A., Kahale, M., Sbeiti, N., Cappellini, M.D., Taher, A.T., Koussa, S., Nasr, T.A., Musallam, K.M., Abbas, H.A., and Porter, J.B. (2017). One-year results from a prospective randomized trial comparing phlebotomy with deferasirox for the treatment of iron overload in pediatric patients with thalassemia major following curative stem cell transplantation. Pediatr. Blood Cancer 64, 188–196.10.1002/pbc.26213Suche in Google Scholar PubMed

Itamochi, H., Kigawa, J., and Terakawa, N. (2008). Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci. 99, 653–658.10.1111/j.1349-7006.2008.00747.xSuche in Google Scholar PubMed

Iwabuchi, T., Yoshimoto, C., Shigetomi, H., and Kobayashi, H. (2015). Oxidative stress and antioxidant defense in endometriosis and its malignant transformation. Oxid. Med. Cell Longev. 2015, 848595.10.1155/2015/848595Suche in Google Scholar PubMed PubMed Central

Jeon, S.Y., Hwang, K.A., and Choi, K.C. (2016). Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J. Steroid Biochem. Mol. Biol. 158, 1–8.10.1016/j.jsbmb.2016.02.005Suche in Google Scholar PubMed

Jiang, L., Kon, N., Li, T., Wang, S.J., Su, T., Hibshoosh, H., Baer, R., and Gu, W. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62.10.1038/nature14344Suche in Google Scholar PubMed PubMed Central

Jiao, Y., Wilkinson, J., Christine Pietsch, E., Buss, J.L., Wang, W., Planalp, R., Torti, F.M., and Torti, S.V. (2006). Iron chelation in the biological activity of curcumin. Free Radic. Biol. Med. 40, 1152–1160.10.1016/j.freeradbiomed.2005.11.003Suche in Google Scholar PubMed

Jiao, Y., Wilkinson, J., Di, X., Wang, W., Hatcher, H., Kock, N.D., D’Agostino, R., Jr., Knovich, M.A., Torti, F.M., and Torti, S.V. (2009). Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113, 462–469.10.1182/blood-2008-05-155952Suche in Google Scholar PubMed PubMed Central

Kobayashi, H. (2016). Potential scenarios leading to ovarian cancer arising from endometriosis. Redox. Rep. 21, 119–126.10.1179/1351000215Y.0000000038Suche in Google Scholar PubMed PubMed Central

Kollara, A. and Brown, T.J. (2006). Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 346, 526–534.10.1016/j.bbrc.2006.05.148Suche in Google Scholar PubMed

Kozak, K.R., Su, F., Whitelegge, J.P., Faull, K., Reddy, S., and Farias-Eisner, R. (2005). Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 5, 4589–4596.10.1002/pmic.200500093Suche in Google Scholar PubMed

Kyriakidis, I. and Papaioannidou, P. (2016). Estrogen receptor beta and ovarian cancer: a key to pathogenesis and response to therapy. Arch. Gynecol. Obstet. 293, 1161–1168.10.1007/s00404-016-4027-8Suche in Google Scholar PubMed

Lagergren, K., Wahlin, K., Mattsson, F., Alderson, D., and Lagergren, J. (2016). Haemochromatosis and gastrointestinal cancer. Int. J. Cancer 139, 1740–1743.10.1002/ijc.30229Suche in Google Scholar PubMed

Lanzino, M., De Amicis, F., McPhaul, M.J., Marsico, S., Panno, M.L., and Ando, S. (2005). Endogenous coactivator ARA70 interacts with estrogen receptor α (ERα) and modulates the functional ERα/androgen receptor interplay in MCF-7 cells. J. Biol. Chem. 280, 20421–20430.10.1074/jbc.M413576200Suche in Google Scholar PubMed

Lattuada, D., Uberti, F., Colciaghi, B., Morsanuto, V., Maldi, E., Squarzanti, D.F., Molinari, C., Boldorini, R., Bulfoni, A., Colombo, P., et al. (2015). Fimbrial cells exposure to catalytic iron mimics carcinogenic changes. Int. J. Gynecol. Cancer 25, 389–398.10.1097/IGC.0000000000000379Suche in Google Scholar PubMed

Leslie, N.R., Bennett, D., Lindsay, Y.E., Stewart, H., Gray, A., and Downes, C.P. (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 22, 5501–5510.10.1093/emboj/cdg513Suche in Google Scholar PubMed PubMed Central

Li, D.W., and Spector, A. (1997). Hydrogen peroxide-induced expression of the proto-oncogenes, c-jun, c-fos and c-myc in rabbit lens epithelial cells. Mol. Cell Biochem. 173, 59–69.10.1023/A:1006828402225Suche in Google Scholar

Liehr, J.G. and Jones, J.S. (2001). Role of iron in estrogen-induced cancer. Curr. Med. Chem. 8, 839–849.10.2174/0929867013372931Suche in Google Scholar PubMed

Ligr, M., Li, Y., Zou, X., Daniels, G., Melamed, J., Peng, Y., Wang, W., Wang, J., Ostrer, H., Pagano, M., et al. (2010). Tumor suppressor function of androgen receptor coactivator ARA70alpha in prostate cancer. Am. J. Pathol. 176, 1891–1900.10.2353/ajpath.2010.090293Suche in Google Scholar PubMed PubMed Central

Liu, Y., Popovich, Z., and Templeton, D.M. (2005). Global genomic approaches to the iron-regulated proteome. Ann. Clin. Lab Sci. 35, 230–239.Suche in Google Scholar

Liu, J., Sun, B., Yin, H., and Liu, S. (2016). Hepcidin: a promising therapeutic target for iron disorders: a systematic review. Medicine (Baltimore) 95, e3150.10.1097/MD.0000000000003150Suche in Google Scholar PubMed PubMed Central

Lobello, N., Biamonte, F., Pisanu, M.E., Faniello, M.C., Jakopin, Z., Chiarella, E., Giovannone, E.D., Mancini, R., Ciliberto, G., Cuda, G., et al. (2016). Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition. Oncotarget 7, 62019–62033.10.18632/oncotarget.11495Suche in Google Scholar PubMed PubMed Central

Louandre, C., Ezzoukhry, Z., Godin, C., Barbare, J.C., Maziere, J.C., Chauffert, B., and Galmiche, A. (2013). Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer 133, 1732–1742.10.1002/ijc.28159Suche in Google Scholar PubMed

Louandre, C., Marcq, I., Bouhlal, H., Lachaier, E., Godin, C., Saidak, Z., Francois, C., Chatelain, D., Debuysscher, V., Barbare, J.C., et al. (2015). The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett. 356, 971–977.10.1016/j.canlet.2014.11.014Suche in Google Scholar

Luczaj, W. and Skrzydlewska, E. (2003). DNA damage caused by lipid peroxidation products. Cell Mol. Biol. Lett. 8, 391–413.Suche in Google Scholar

Lui, G.Y., Kovacevic, Z., Richardson, V., Merlot, A.M., Kalinowski, D.S., and Richardson, D.R. (2015). Targeting cancer by binding iron: dissecting cellular signaling pathways. Oncotarget 6, 18748–18779.10.18632/oncotarget.4349Suche in Google Scholar

Macuks, R., Baidekalna, I., and Donina, S. (2012). An ovarian cancer malignancy risk index composed of HE4, CA125, ultrasonographic score, and menopausal status: use in differentiation of ovarian cancers and benign lesions. Tumour Biol. 33, 1811–1817.10.1007/s13277-012-0440-1Suche in Google Scholar

Maehira, F., Miyagi, I., Asato, T., Eguchi, Y., Takei, H., Nakatsuki, K., Fukuoka, M., and Zaha, F. (1999). Alterations of protein kinase C, 8-hydroxydeoxyguanosine, and K-ras oncogene in rat lungs exposed to passive smoking. Clin. Chim. Acta 289, 133–144.10.1016/S0009-8981(99)00163-1Suche in Google Scholar

Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W., and Kimmelman, A.C. (2014). Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109.10.1038/nature13148Suche in Google Scholar PubMed PubMed Central

Mancias, J.D., Pontano Vaites, L., Nissim, S., Biancur, D.E., Kim, A.J., Wang, X., Liu, Y., Goessling, W., Kimmelman, A.C., and Harper, J.W. (2015). Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife. doi: 10.7554/eLife.10308.10.7554/eLife.10308.Suche in Google Scholar

Marrogi, A.J., Khan, M.A., van Gijssel, H.E., Welsh, J.A., Rahim, H., Demetris, A.J., Kowdley, K.V., Hussain, S.P., Nair, J., Bartsch, H., et al. (2001). Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J. Natl. Cancer Inst. 93, 1652–1655.10.1093/jnci/93.21.1652Suche in Google Scholar PubMed

Martin, O.C., Lin, C., Naud, N., Tache, S., Raymond-Letron, I., Corpet, D.E., and Pierre, F.H. (2015). Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats. Nutr. Cancer 67, 119–125.10.1080/01635581.2015.976317Suche in Google Scholar PubMed

Martinez, M.B., Ruan, M., and Fitzpatrick, L.A. (2000). Altered response to thyroid hormones by breast and ovarian cancer cells. Anticancer Res. 20, 4141–4146.Suche in Google Scholar

Mayr, R., Janecke, A.R., Schranz, M., Griffiths, W.J., Vogel, W., Pietrangelo, A., and Zoller, H. (2010). Ferroportin disease: a systematic meta-analysis of clinical and molecular findings. J Hepatol 53, 941–949.10.1016/j.jhep.2010.05.016Suche in Google Scholar PubMed PubMed Central

McKie, A.T., Barrow, D., Latunde-Dada, G.O., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomford, A., et al. (2001). An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759.10.1126/science.1057206Suche in Google Scholar PubMed

Miller, L.D., Coffman, L.G., Chou, J.W., Black, M.A., Bergh, J., D’Agostino, R., Jr., Torti, S.V., and Torti, F.M. (2011). An iron regulatory gene signature predicts outcome in breast cancer. Cancer Res. 71, 6728–6737.10.1158/0008-5472.CAN-11-1870Suche in Google Scholar PubMed PubMed Central

Miseta, A., Nagy, J., Nagy, T., Poor, V.S., Fekete, Z., and Sipos, K. (2015). Hepcidin and its potential clinical utility. Cell Biol. Int. 39, 1191–1202.10.1002/cbin.10505Suche in Google Scholar PubMed

Moore, L.E., Pfeiffer, R.M., Zhang, Z., Lu, K.H., Fung, E.T., and Bast, R.C., Jr. (2012). Proteomic biomarkers in combination with CA 125 for detection of epithelial ovarian cancer using prediagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Cancer 118, 91–100.10.1002/cncr.26241Suche in Google Scholar PubMed PubMed Central

Mori, M., Ito, F., Shi, L., Wang, Y., Ishida, C., Hattori, Y., Niwa, M., Hirayama, T., Nagasawa, H., Iwase, A., et al. (2015). Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron. Redox. Biol. 6, 578–586.10.1016/j.redox.2015.10.001Suche in Google Scholar PubMed PubMed Central

Mungenast, F. and Thalhammer, T. (2014). Estrogen biosynthesis and action in ovarian cancer. Front Endocrinol. (Lausanne) 5, 192.10.3389/fendo.2014.00192Suche in Google Scholar PubMed PubMed Central

Ijssennagger N., Derrien, M., van Doorn, G.M., Rijnierse, A., van den Bogert, B., Muller, M., Dekker, J., Kleerebezem, M., and van der Meer, R. (2012). Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS One 7, e49868.10.1371/journal.pone.0049868Suche in Google Scholar PubMed PubMed Central

Ng, O. (2016). Iron, microbiota and colorectal cancer. Wien. Med. Wochenschr. 166, 431–436.10.1007/s10354-016-0508-4Suche in Google Scholar PubMed

Nirei, K., Matsuoka, S., Nakamura, H., Matsumura, H., and Moriyama, M. (2015). Incidence of hepatocellular carcinoma reduced by phlebotomy treatment in patients with chronic hepatitis C. Intern. Med. 54, 107–117.10.2169/internalmedicine.54.2715Suche in Google Scholar PubMed

Peng, Y., Li, C.X., Chen, F., Wang, Z., Ligr, M., Melamed, J., Wei, J., Gerald, W., Pagano, M., Garabedian, M.J., et al. (2008). Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. Am. J. Pathol. 172, 225–235.10.2353/ajpath.2008.070065Suche in Google Scholar PubMed PubMed Central

Pigeon, C., Ilyin, G., Courselaud, B., Leroyer, P., Turlin, B., Brissot, P., and Loreal, O. (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811–7819.10.1074/jbc.M008923200Suche in Google Scholar PubMed

Powell, L.W., Seckington, R.C., and Deugnier, Y. (2016). Haemochromatosis. Lancet 388, 706–716.10.1007/978-3-642-76802-6_24Suche in Google Scholar

Qian, Y., Yin, C., Chen, Y., Zhang, S., Jiang, L., Wang, F., Zhao, M., and Liu, S. (2015). Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element. Cell Signal. 27, 934–942.10.1016/j.cellsig.2015.01.017Suche in Google Scholar PubMed

Ross, S.L., Tran, L., Winters, A., Lee, K.J., Plewa, C., Foltz, I., King, C., Miranda, L.P., Allen, J., Beckman, H., et al. (2012). Molecular mechanism of hepcidin-mediated ferroportin internalization requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab. 15, 905–917.10.1016/j.cmet.2012.03.017Suche in Google Scholar PubMed

Rouault, T.A. (2015). Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 16, 45–55.10.1038/nrm3909Suche in Google Scholar PubMed

Sanchez, A.M., Papaleo, E., Corti, L., Santambrogio, P., Levi, S., Vigano, P., Candiani, M., and Panina-Bordignon, P. (2014). Iron availability is increased in individual human ovarian follicles in close proximity to an endometrioma compared with distal ones. Hum. Reprod. 29, 577–583.10.1093/humrep/det466Suche in Google Scholar PubMed

Sansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., Ceccarelli, C., Santini, D., Paterini, P., Marcu, K.B., et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest. 117, 3988–4002.10.1172/JCI32533Suche in Google Scholar PubMed PubMed Central

Seidman, J.D. (2013). The presence of mucosal iron in the fallopian tube supports the “incessant menstruation hypothesis” for ovarian carcinoma. Int. J. Gynecol. Pathol. 32, 454–458.10.1097/PGP.0b013e31826f5ce2Suche in Google Scholar PubMed

Shaw, P.A., Rittenberg, P.V., and Brown, T.J. (2001). Activation of androgen receptor-associated protein 70 (ARA70) mRNA expression in ovarian cancer. Gynecol. Oncol. 80, 132–138.10.1006/gyno.2000.6068Suche in Google Scholar PubMed

Shi, H., Bencze, K.Z., Stemmler, T.L., and Philpott, C.C. (2008). A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 1207–1210.10.1126/science.1157643Suche in Google Scholar PubMed PubMed Central

Shigeta, S., Toyoshima, M., Kitatani, K., Ishibashi, M., Usui, T., and Yaegashi, N. (2016). Transferrin facilitates the formation of DNA double-strand breaks via transferrin receptor 1: the possible involvement of transferrin in carcinogenesis of high-grade serous ovarian cancer. Oncogene 35, 3577–3586.10.1038/onc.2015.425Suche in Google Scholar PubMed

Singh, A.K., Chattopadhyay, R., Chakravarty, B., and Chaudhury, K. (2013). Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 42, 116–124.10.1016/j.reprotox.2013.08.005Suche in Google Scholar

Skouta, R., Dixon, S.J., Wang, J., Dunn, D.E., Orman, M., Shimada, K., Rosenberg, P.A., Lo, D.C., Weinberg, J.M., Linkermann, A., et al. (2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556.10.1021/ja411006aSuche in Google Scholar

Stein, P., Yu, H., Jain, D., and Mistry, P.K. (2010). Hyperferritinemia and iron overload in type 1 Gaucher disease. Am. J. Hematol. 85, 472–476.10.1002/ajh.21721Suche in Google Scholar

Sun, X., Ou, Z., Xie, M., Kang, R., Fan, Y., Niu, X., Wang, H., Cao, L., and Tang, D. (2015). HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34, 5617–5625.10.1038/onc.2015.32Suche in Google Scholar

Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., and Tang, D. (2016). Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184.10.1002/hep.28251Suche in Google Scholar

Tak, P.P., Zvaifler, N.J., Green, D.R., and Firestein, G.S. (2000). Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82.10.1016/S0167-5699(99)01552-2Suche in Google Scholar

Tanaka, T., Iwasa, Y., Kondo, S., Hiai, H., and Toyokuni, S. (1999). High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene 18, 3793–3797.10.1038/sj.onc.1202707Suche in Google Scholar PubMed

Tarangelo, A. and Dixon, S.J. (2016). Nanomedicine: an iron age for cancer therapy. Nat. Nanotechnol 11, 921–922.10.1038/nnano.2016.199Suche in Google Scholar PubMed PubMed Central

Tolg, C., Sabha, N., Cortese, R., Panchal, T., Ahsan, A., Soliman, A., Aitken, K.J., Petronis, A., and Bagli, D.J. (2011). Uropathogenic E. coli infection provokes epigenetic downregulation of CDKN2A (p16INK4A) in uroepithelial cells. Lab. Invest. 91, 825–836.10.1038/labinvest.2010.197Suche in Google Scholar PubMed

Tortorella, S. and Karagiannis, T.C. (2014). Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J. Membr. Biol. 247, 291–307.10.1007/s00232-014-9637-0Suche in Google Scholar PubMed

Toyokuni, S. (1996). Iron-induced carcinogenesis: the role of redox regulation. Free Radic. Biol. Med. 20, 553–566.10.1016/0891-5849(95)02111-6Suche in Google Scholar

Tripathi, P.K. and Chatterjee, S.K. (1996). Elevated expression of ferritin H-chain mRNA in metastatic ovarian tumor. Cancer Invest. 14, 518–526.10.3109/07357909609076897Suche in Google Scholar

Uberti, F., Morsanuto, V., Lattuada, D., Colciaghi, B., Cochis, A., Bulfoni, A., Colombo, P., Bolis, G., and Molinari, C. (2016). Protective effects of vitamin D3 on fimbrial cells exposed to catalytic iron damage. J. Ovarian Res. 9, 34.10.1186/s13048-016-0243-xSuche in Google Scholar

Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160, 1–40.10.1016/j.cbi.2005.12.009Suche in Google Scholar

Van Langendonckt, A., Casanas-Roux, F., and Donnez, J. (2002). Iron overload in the peritoneal cavity of women with pelvic endometriosis. Fertil. Steril. 78, 712–718.10.1016/S0015-0282(02)03346-0Suche in Google Scholar

Vercellini, P., Crosignani, P., Somigliana, E., Vigano, P., Buggio, L., Bolis, G., and Fedele, L. (2011). The ‘incessant menstruation’ hypothesis: a mechanistic ovarian cancer model with implications for prevention. Hum. Reprod. 26, 2262–2273.10.1093/humrep/der211Suche in Google Scholar PubMed

Vyhlidal, C., Li, X., and Safe, S. (2002). Estrogen regulation of transferrin gene expression in MCF-7 human breast cancer cells. J. Mol. Endocrinol. 29, 305–317.10.1677/jme.0.0290305Suche in Google Scholar PubMed

Wang, J. and Pantopoulos, K. (2011). Regulation of cellular iron metabolism. Biochem J. 434, 365–381.10.1042/BJ20101825Suche in Google Scholar PubMed PubMed Central

Ward, D.M. and Kaplan, J. (2012). Ferroportin-mediated iron transport: expression and regulation. Biochim. Biophys Acta 1823, 1426–1433.10.1016/j.bbamcr.2012.03.004Suche in Google Scholar PubMed PubMed Central

Weiss, G., Houston, T., Kastner, S., Johrer, K., Grunewald, K., and Brock, J.H. (1997). Regulation of cellular iron metabolism by erythropoietin: activation of iron-regulatory protein and upregulation of transferrin receptor expression in erythroid cells. Blood 89, 680–687.10.1182/blood.V89.2.680Suche in Google Scholar

Winterbourn, C.C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 82–83, 969–974.10.1016/0378-4274(95)03532-XSuche in Google Scholar

Wu, X., Chen, F., Sahin, A., Albarracin, C., Pei, Z., Zou, X., Singh, B., Xu, R., Daniels, G., Li, Y., et al. (2011). Distinct function of androgen receptor coactivator ARA70alpha and ARA70beta in mammary gland development, and in breast cancer. Breast Cancer Res. Treat 128, 391–400.10.1007/s10549-010-1131-5Suche in Google Scholar PubMed

Wyllie, S. and Liehr, J.G. (1998). Enhancement of estrogen-induced renal tumorigenesis in hamsters by dietary iron. Carcinogenesis 19, 1285–1290.10.1093/carcin/19.7.1285Suche in Google Scholar PubMed

Yamada, Y., Shigetomi, H., Onogi, A., Haruta, S., Kawaguchi, R., Yoshida, S., Furukawa, N., Nagai, A., Tanase, Y., Tsunemi, T., et al. (2011). Redox-active iron-induced oxidative stress in the pathogenesis of clear cell carcinoma of the ovary. Int. J. Gynecol. Cancer 21, 1200–1207.10.1097/IGC.0b013e318222cfddSuche in Google Scholar PubMed

Yamaguchi, K., Mandai, M., Toyokuni, S., Hamanishi, J., Higuchi, T., Takakura, K., and Fujii, S. (2008). Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin. Cancer Res. 14, 32–40.10.1158/1078-0432.CCR-07-1614Suche in Google Scholar PubMed

Yamaguchi, K., Mandai, M., Oura, T., Matsumura, N., Hamanishi, J., Baba, T., Matsui, S., Murphy, S.K., and Konishi, I. (2010). Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 29, 1741–1752.10.1038/onc.2009.470Suche in Google Scholar PubMed

Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., Cheah, J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331.10.1016/j.cell.2013.12.010Suche in Google Scholar PubMed PubMed Central

Yuan, H., Li, X., Zhang, X., Kang, R., and Tang, D. (2016). CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys Res. Commun. 478, 838–844.10.1016/j.bbrc.2016.08.034Suche in Google Scholar PubMed

Zacharski, L.R., Chow, B.K., Howes, P.S., Shamayeva, G., Baron, J.A., Dalman, R.L., Malenka, D.J., Ozaki, C.K., and Lavori, P.W. (2008). Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial. J. Natl. Cancer Inst. 100, 996–1002.10.1093/jnci/djn209Suche in Google Scholar PubMed

Zhang, C. and Zhang, F. (2015). Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein. Cell 6, 88–100.10.1007/s13238-014-0119-zSuche in Google Scholar PubMed PubMed Central

Zhang, F., Tao, Y., Zhang, Z., Guo, X., An, P., Shen, Y., Wu, Q., Yu, Y., and Wang, F. (2012). Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica 97, 1826–1835.10.3324/haematol.2012.063974Suche in Google Scholar PubMed PubMed Central

Received: 2016-12-10
Accepted: 2017-1-9
Published Online: 2017-6-23
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0336/html
Button zum nach oben scrollen