Home The monoheme cytochrome c subunit of Alternative Complex III is a direct electron donor to caa3 oxygen reductase in Rhodothermus marinus
Article
Licensed
Unlicensed Requires Authentication

The monoheme cytochrome c subunit of Alternative Complex III is a direct electron donor to caa3 oxygen reductase in Rhodothermus marinus

  • Patrícia N. Refojo , Filipa Calisto , Miguel A. Ribeiro , Miguel Teixeira and Manuela M. Pereira EMAIL logo
Published/Copyright: June 24, 2017

Abstract

Alternative Complex III (ACIII) is an example of the robustness and flexibility of prokaryotic respiratory chains. It performs quinol:cytochrome c oxidoreductase activity, being functionally equivalent to the bc1 complex but structurally unrelated. In this work we further explored ACIII investigating the role of its monoheme cytochrome c subunit (ActE). We expressed and characterized the individually isolated ActE, which allowed us to suggest that ActE is a lipoprotein and to show its function as a direct electron donor to the caa3 oxygen reductase.

Acknowledgements

P.N.R. and F.C. are recipients of grants from Fundação para a Ciência e a Tecnologia (SFRH/BPD/71022/2010 and SFRH/BD/104481/2014, respectively). The work was funded by Fundação para a Ciência e a Tecnologia (PTDC/BIA-PRO/120949/2010 and IF/01507/2015to MMP) and supported by LISBOA-01-0145-FEDER-007660 co-funded by FEDER through COMPETE2020-POCI and by Fundação para a Ciência e a Tecnologia. MS were obtained by the UniMS – Mass Spectrometry Unit, ITQB/iBET, Oeiras, Portugal. N-terminal amino acid sequence was determined by the Analytical Services Unit, ITQB/iBET, Oeiras, Portugal. Célia M. Silveira and Smilja Todorovic are acknowledged for helping with cyclic voltammetry measurements and Ricardo Louro with the acquisition and analysis of NMR data. Filipe M. Sousa is acknowledged for the critical reading.

References

Arslan, E., Schulz, H., Zufferey, R., Kunzler, P., and Thony-Meyer, L. (1998). Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 251, 744–747.10.1006/bbrc.1998.9549Search in Google Scholar PubMed

Babu, M.M., Priya, M.L., Selvan, A.T., Madera, M., Gough, J., Aravind, L., and Sankaran, K. (2006). A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J. Bacteriol. 188, 2761–2773.10.1128/JB.188.8.2761-2773.2006Search in Google Scholar PubMed PubMed Central

Berry, E.A. and Trumpower, B.L. (1987). Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal. Biochem. 161, 1–15.10.1016/0003-2697(87)90643-9Search in Google Scholar PubMed

Bushnell, G.W., Louie, G.V., and Brayer, G.D. (1990). High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595.10.1016/0022-2836(90)90200-6Search in Google Scholar PubMed

Edman, P. and Begg, G. (1967). A protein sequenator. Eur. J. Biochem. 1, 80–91.10.1007/978-3-662-25813-2_14Search in Google Scholar PubMed

Gao, X., Xin, Y., and Blankenship, R.E. (2009). Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of Chloroflexus aurantiacus. FEBS Lett. 583, 3275–3279.10.1016/j.febslet.2009.09.022Search in Google Scholar PubMed

Gao, X., Xin, Y., Bell, P.D., Wen, J., and Blankenship, R.E. (2010). Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. Biochemistry 49, 6670–6679.10.1021/bi100858kSearch in Google Scholar PubMed PubMed Central

Gao, X., Majumder, E.W., Kang, Y., Yue, H., and Blankenship, R.E. (2013). Functional analysis and expression of the mono-heme containing cytochrome c subunit of Alternative Complex III in Chloroflexus aurantiacus. Arch. Biochem. Biophys. 535, 197–204.10.1016/j.abb.2013.04.002Search in Google Scholar PubMed

Goodhew, C.F., Brown, K.R., and Pettigrew, G.W. (1986). Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim. Biophys. Acta 852, 288–294.10.1016/0005-2728(86)90234-3Search in Google Scholar

Haladjian, J., Thierry-Chef, I., and Bianco, P. (1996). Permselective-membrane pyrolytic graphite electrode for the study of microvolumes of [2Fe-2S] ferredoxin. Talanta 43, 1125–1130.10.1016/0039-9140(96)01874-7Search in Google Scholar PubMed

Hayashi, S. and Wu, H.C. (1990). Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22, 451–471.10.1007/BF00763177Search in Google Scholar PubMed

Juncker, A.S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H., and Krogh, A. (2003). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12, 1652–1662.10.1110/ps.0303703Search in Google Scholar PubMed PubMed Central

Kanehisa, M. and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.10.1093/nar/28.1.27Search in Google Scholar PubMed PubMed Central

Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–357.10.1093/nar/gkj102Search in Google Scholar PubMed PubMed Central

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., et al. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–484.10.1093/nar/gkm882Search in Google Scholar PubMed PubMed Central

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols 10, 845–858.10.1038/nprot.2015.053Search in Google Scholar PubMed PubMed Central

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.10.1038/227680a0Search in Google Scholar PubMed

Marreiros, B.C., Calisto, F., Castro, P.J., Duarte, A.M., Sena, F.V., Silva, A.F., Sousa, F.M., Teixeira, M., Refojo, P.N., and Pereira, M.M. (2016). Exploring membrane respiratory chains. Biochim. Biophys. Acta 1857, 1039–1067.10.1016/j.bbabio.2016.03.028Search in Google Scholar PubMed

Moore, G.R. and Pettigrew, G.W. (1990). Spectroscopic Studies of Cytochromes Cytochromes c: Evolutionary, Structural and Physicochemical Aspects. In: Chapter 2 Spectroscopic studies of cytochromes, A. Rich, ed. (Berlin, Heildelberg: Springer-Verlag).10.1007/978-3-642-74536-2Search in Google Scholar

Pereira, M.M., Carita, J.N., and Teixeira, M. (1999a). Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry 38, 1268–1275.10.1021/bi9818063Search in Google Scholar PubMed

Pereira, M.M., Santana, M., Soares, C.M., Mendes, J., Carita, J.N., Fernandes, A.S., Saraste, M., Carrondo, M.A., and Teixeira, M. (1999b). The caa3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. Biochim. Biophys. Acta 1413, 1–13.10.1016/S0005-2728(99)00073-0Search in Google Scholar

Pereira, M.M., Refojo, P.N., Hreggvidsson, G.O., Hjorleifsdottir, S., and Teixeira, M. (2007). The alternative complex III from Rhodothermus marinus – a prototype of a new family of quinol:electron acceptor oxidoreductases. FEBS Lett. 581, 4831–4835.10.1016/j.febslet.2007.09.008Search in Google Scholar PubMed

Ptitsyn, O.B. (1998). Protein folding and protein evolution: common folding nucleus in different subfamilies of c-type cytochromes? J. Mol. Biol. 278, 655–666.10.1006/jmbi.1997.1620Search in Google Scholar PubMed

Refojo, P.N., Sousa, F.L., Teixeira, M., and Pereira, M.M. (2010a). The alternative complex III: a different architecture using known building modules. Biochim Biophys Acta 1797, 1869–1876.10.1016/j.bbabio.2010.04.012Search in Google Scholar PubMed

Refojo, P.N., Teixeira, M. and Pereira, M.M. (2010b). The alternative complex III of Rhodothermus marinus and its structural and functional association with caa3 oxygen reductase. Biochim. Biophys. Acta 1797, 1477–1482.10.1016/j.bbabio.2010.02.029Search in Google Scholar PubMed

Refojo, P.N., Ribeiro, M.A., Calisto, F., Teixeira, M., and Pereira, M.M. (2013). Structural composition of alternative complex III: variations on the same theme. Biochim. Biophys. Acta 1827, 1378–1382.10.1016/j.bbabio.2013.01.001Search in Google Scholar PubMed

Schejter, A. and George, P. (1964). The 695-Mmm band of ferricytochrome c and its relationship to protein conformation. Biochemistry 3, 1045–1049.10.1021/bi00896a006Search in Google Scholar PubMed

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.10.1016/0003-2697(85)90442-7Search in Google Scholar PubMed

Speicher, K.D., Gorman, N., and Speicher, D.W. (2009). N-terminal sequence analysis of proteins and peptides. Curr. Protocols Protein. Sci. Chapter 11, Unit 11 10.10.1002/0471140864.ps1110s57Search in Google Scholar PubMed

Stelter, M., Melo, A.M., Pereira, M.M., Gomes, C.M., Hreggvidsson, G.O., Hjorleifsdottir, S., Saraiva, L.M., Teixeira, M., and Archer, M. (2008). A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23 Å resolution of Rhodothermus marinus cytochrome c. Biochemistry 47, 11953–11963.10.1021/bi800999gSearch in Google Scholar PubMed

Stelter, M., Melo, A.M., Hreggvidsson, S., Saraiva, L.M., Teixeira, M., and Archer, M. (2010). Structure at 1.0 A resolution of a high-potential iron-sulfur protein involved in the aerobic respiratory chain of Rhodothermus marinus. J. Biol. Inorg. Chem. 15, 303–313.10.1007/s00775-009-0603-8Search in Google Scholar PubMed

Ujihara, T., Sakurai, I., Mizusawa, N., and Wada, H. (2008). A method for analyzing lipid-modified proteins with mass spectrometry. Anal. Biochem. 374, 429–431.10.1016/j.ab.2007.11.014Search in Google Scholar PubMed

Valente, F.M., Pereira, P.M., Venceslau, S.S., Regalla, M., Coelho, A.V., and Pereira, I.A. (2007). The [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough is a bacterial lipoprotein lacking a typical lipoprotein signal peptide. FEBS Lett. 581, 3341–3344.10.1016/j.febslet.2007.06.020Search in Google Scholar PubMed

Wass, M.N., Kelley, L.A., and Sternberg, M.J. (2010). 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38, W469–473.10.1093/nar/gkq406Search in Google Scholar PubMed PubMed Central

Yanyushin, M.F., del Rosario, M.C., Brune, D.C., and Blankenship, R.E. (2005). New class of bacterial membrane oxidoreductases. Biochemistry 44, 10037–10045.10.1021/bi047267lSearch in Google Scholar PubMed

Received: 2016-11-2
Accepted: 2017-1-23
Published Online: 2017-6-24
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0323/html
Scroll to top button