Human carbonic anhydrase VII protects cells from oxidative damage
-
Rita Del Giudice
, Daria M. Monti, Emanuela Truppo
, Angela Arciello , Claudiu T. Supuran , Giuseppina De Simone und Simona M. Monti
Abstract
Human carbonic anhydrase (hCA) VII is a cytosolic enzyme with high carbon dioxide hydration activity. Recently, S-glutathionylation of two cysteine residues from the enzyme was revealed, suggesting a new role as oxygen radical scavenger. We analyzed the effect of native and tetramutated hCA VII (all cysteines mutated into serines) in a eukaryotic system by stressing cells with an oxidant agent. Results clearly show that native hCA VII can protect cells from oxidative damage by preventing the apoptosis cascade and that cysteines play a leading role in this process. Our findings definitively confirm hCA VII protective role toward oxidative insult.
References
Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C.T., and De Simone, G. (2012). Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem. Rev. 112, 4421–4468.10.1021/cr200176rSuche in Google Scholar PubMed
Arciello, A., De Marco, N., Del Giudice, R., Guglielmi, F., Pucci, P., Relini, A., Monti, D.M., and Piccoli, R. (2011). Insights into the fate of the N-terminal amyloidogenic polypeptide of ApoA-I in cultured target cells. J. Cell. Mol. Med. 15, 2652–2663.10.1111/j.1582-4934.2011.01271.xSuche in Google Scholar PubMed PubMed Central
Asiedu, M., Ossipov, M.H., Kaila, K., and Price, T.J. (2010). Acetazolamide and midazolam act synergistically to inhibit neuropathic pain. Pain 148, 302–308.10.1016/j.pain.2009.11.015Suche in Google Scholar PubMed PubMed Central
Bootorabi, F., Jänis, J., Smith, E., Waheed, A., Kukkurainen, S., Hytönen, V., Valjakka, J., Supuran, C.T., Vullo, D., Sly, W.S., et al. (2010). Analysis of a shortened form of human carbonic anhydrase VII expressed in vitro compared to the full-length enzyme. Biochimie 92, 1072–1780.10.1016/j.biochi.2010.05.008Suche in Google Scholar PubMed
Di Fiore, A., Monti, S.M., Hilvo, M., Parkkila, S., Romano, V., Scaloni, A., Pedone, C., Scozzafava, A., Supuran, C.T., and De Simone, G. (2009). Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Proteins 74, 164–175.10.1002/prot.22144Suche in Google Scholar PubMed
Di Fiore, A., Truppo, E., Supuran, C.T., Alterio, V., Dathan, N., Bootorabi, F., Parkkila, S., Monti, S.M., and De Simone, G. (2010). Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide. Bioorg. Med. Chem. Lett. 20, 5023–5026.10.1016/j.bmcl.2010.07.051Suche in Google Scholar PubMed
Earnhardt, J.N., Qian, M., Tu, C., Lakkis, M.M., Bergenhem, N.C., Laipis, P.J., Tashian, R.E., and Silverman, D.N. (1998). The catalytic properties of murine carbonic anhydrase VII. Biochemistry 37, 10837–10845.10.1021/bi980046tSuche in Google Scholar PubMed
Hilvo, M., Innocenti, A., Monti, S.M., De Simone, G., Supuran, C.T., and Parkkila, S. (2008). Recent advances in research on the most novel carbonic anhydrases, CA XIII and XV. Curr. Pharm. Des. 14, 672–678.10.2174/138161208783877811Suche in Google Scholar PubMed
Khalifah, R.G. (1971). The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 246, 2561–2573.10.1016/S0021-9258(18)62326-9Suche in Google Scholar
Mallis, R.J., Poland, B.W., Chatterjee, T.K., Fisher, R.A., Darmawan, S., Honzatko, R.B., and Thomas, J.A. (2000). Crystal structure of S-glutathiolated carbonic anhydrase III. FEBS Lett. 482, 237–241.10.1016/S0014-5793(00)02022-6Suche in Google Scholar PubMed
Montgomery, J.C., Venta, P.J., Eddy, R.L., Fukushima, Y.S., Shows, T.B., and Tashian, R.E. (1991). Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics 11, 835–848.10.1016/0888-7543(91)90006-ZSuche in Google Scholar
Monti, S.M., Supuran, C.T., and De Simone, G. (2012a). Carbonic anhydrase IX as a target for designing novel anticancer drugs. Curr. Med. Chem. 19, 821–830.10.2174/092986712799034851Suche in Google Scholar PubMed
Monti, D.M., Di Gaetano, S., Del Giudice, R., Giangrande, C., Amoresano, A., Monti, M., Arciello, A., and Piccoli, R. (2012b). Apolipoprotein A-I amyloidogenic variant L174S, expressed and isolated from stably transfected mammalian cells, is associated with fatty acids. Amyloid 19, 21–27.10.3109/13506129.2011.651544Suche in Google Scholar PubMed
Norris, D.A., Middleton, M.H., Whang, K., Schleicher, M., McGovern, T., Bennion, S.D., David-Bajar, K., Davis, D., and Duke, R.C. (1997). Human keratinocytes maintain reversible anti-apoptotic defenses in vivo and in vitro. Apoptosis 2, 136–148.10.1023/A:1026456229688Suche in Google Scholar
Parkkila, S., Kivelä, A.J., Kaunisto, K., Parkkila, A.K., Hakkola, J., Rajaniemi, H., Waheed, A., and Sly, W.S. (2002). The plasma membrane carbonic anhydrase in murine hepatocytes identified as isozyme XIV. Gastroenterol. 21, 2–13.10.1186/1471-230X-2-13Suche in Google Scholar PubMed PubMed Central
Räisänen, S.R., Lehenkari, P., Tasanen, M., Rahkila, P., Härkönen, P.L., and Väänänen, H.K. (1999). Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 13, 513–522.10.1096/fasebj.13.3.513Suche in Google Scholar PubMed
Ribble, D., Goldstain, N.B., Norris, D.A., and Shellman, Y.G. (2005). A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 10, 5–12.10.1186/1472-6750-5-12Suche in Google Scholar PubMed PubMed Central
Rivera, C., Voipio, J., and Kaila, K. (2005). Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J. Physiol. 562, 27–36.10.1113/jphysiol.2004.077495Suche in Google Scholar PubMed PubMed Central
Roy, P., Reavey, E., Rayne, M., Roy, S., Abed El Baky, M., Ishii, Y., and Bartholomew, C. (2010). Enhanced sensitivity to hydrogen peroxide-induced apoptosis in Evi1 transformed Rat1 fibroblasts due to repression of carbonic anhydrase III. FEBS J. 277, 441–452.10.1111/j.1742-4658.2009.07496.xSuche in Google Scholar PubMed
Ruusuvuori, E., Li, H., Huttu, K., Palva, J.M., Smirnov, S., Rivera, C., Kaila, K., and Voipio, J. (2004). Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J. Neurosci. 24, 2699–2707.10.1523/JNEUROSCI.5176-03.2004Suche in Google Scholar PubMed PubMed Central
Shah, G.N., Hewett-Emmett, D., Grubb, J.H., Migas, M.C., Fleming, R.E., Waheed, A., and Sly, W.S. (2000). Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. Proc. Natl. Acad. Sci. USA 97, 1677–1682.10.1073/pnas.97.4.1677Suche in Google Scholar PubMed PubMed Central
Supuran, C.T. (2008). Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7, 168–181.10.1038/nrd2467Suche in Google Scholar PubMed
Truppo, E., Supuran, C.T., Sandomenico, A., Vullo, D., Innocenti, A., Di Fiore, A., Alterio, V., De Simone, G., and Monti, S.M. (2012). Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg. Med. Chem. Lett. 22, 1560–1564.10.1016/j.bmcl.2011.12.134Suche in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Artikel in diesem Heft
- Masthead
- Masthead
- Reviews
- Endothelial progenitor cells in coronary artery disease
- Current methods for the isolation of extracellular vesicles
- S-glutathionylation: relevance in diabetes and potential role as a biomarker
- Site-directed spin labeling EPR spectroscopy in protein research
- What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition
- Research Articles/Short Communications
- Molecular Medicine
- Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats
- Induction of the DNA damage response by IAP inhibition triggers natural immunity via upregulation of NKG2D ligands in Hodgkin lymphoma in vitro
- Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment
- Cell Biology and Signaling
- Human carbonic anhydrase VII protects cells from oxidative damage
- Proteolysis
- Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells
Artikel in diesem Heft
- Masthead
- Masthead
- Reviews
- Endothelial progenitor cells in coronary artery disease
- Current methods for the isolation of extracellular vesicles
- S-glutathionylation: relevance in diabetes and potential role as a biomarker
- Site-directed spin labeling EPR spectroscopy in protein research
- What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition
- Research Articles/Short Communications
- Molecular Medicine
- Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats
- Induction of the DNA damage response by IAP inhibition triggers natural immunity via upregulation of NKG2D ligands in Hodgkin lymphoma in vitro
- Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment
- Cell Biology and Signaling
- Human carbonic anhydrase VII protects cells from oxidative damage
- Proteolysis
- Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells