Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats
Abstract
Hypothermia has neuroprotective effects on global cerebral ischemic injuries. However, its efficacy after intracerebral hemorrhage (ICH) is inconclusive. In this study, bacterial collagenase was used to induce ICH stroke in male Wistar rats. We assessed the effects of normothermia and 4 h of local hypothermia (∼33.2°C) initiated 1, 6, or 12 h after collagenase infusion on hemorrhage volume and neurological outcomes. Following early cooling initiated after 1 h, blood-brain barrier (BBB) disruption and brain water content were tested. Furthermore, the expression levels of tight junction (TJ) proteins (claudin 5 and occludin) and the proinflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were determined using Western blotting, real-time quantitative PCR, and immunohistochemical staining at 1 and 3 d after ICH. Early local hypothermia tends to reduce hemorrhagic volume and neurological deficits, but the difference is not statistically significant compared with other groups. However, early hypothermia significantly reduces BBB disruption, edema formation, the expression levels of IL-1β and TNF-α, and the loss of TJ proteins. Together, these data suggest that local hypothermia is an effective treatment for edema formation and BBB disruption via the upregulation of TJ proteins and the suppression of TNF-α and IL-1β.
This work was supported by the Natural Science Foundation of China, No. 30570620. The authors greatly appreciate the technical assistance of Dr. Sheng Li.
References
Aronowski, J. and Zhao, X. (2011). Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42, 1781–1786.10.1161/STROKEAHA.110.596718Search in Google Scholar PubMed PubMed Central
Bernard, S.A., Gray, T.W., Buist, M.D., Jones, B.M., Silvester, W., Gutteridge, G., and Smith, K. (2002). Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563.10.1056/NEJMoa003289Search in Google Scholar PubMed
Bolton, S.J., Anthony, D.C., and Perry, V.H. (1998). Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 86, 1245–1257.10.1016/S0306-4522(98)00058-XSearch in Google Scholar
Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., and Chopp, M. (2001). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011.10.1161/01.STR.32.4.1005Search in Google Scholar PubMed
Choudhri, T.F., Hoh, B.L., Solomon, R.A., Connolly, E.S. Jr., and Pinsky, D.J. (1997). Use of a spectrophotometric hemoglobin assay to objectively quantify intracerebral hemorrhage in mice. Stroke 28, 2296–2302.10.1161/01.STR.28.11.2296Search in Google Scholar PubMed
Cipolla, M.J., Bishop, N., and Chan, S.L. (2012). Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum. Hypertension 60, 705–711.10.1161/HYPERTENSIONAHA.112.198952Search in Google Scholar PubMed PubMed Central
De Vries, H.E., Blom-Roosemalen, M.C., Van Oosten, M., De Boer, A.G., Van Berkel, T.J., Breimer, D.D., and Kuiper, J. (1996). The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol. 64, 37–43.10.1016/0165-5728(95)00148-4Search in Google Scholar PubMed
Feng, S., Cen, J., Huang, Y., Shen, H., Yao, L., Wang, Y., and Chen, Z. (2011). Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 6, e20599.10.1371/annotation/716c0fb2-dbdd-4da5-ad8a-d2b1cdac4ec6Search in Google Scholar
Fingas, M., Penner, M., Silasi, G., and Colbourne, F. (2009). Treatment of intracerebral hemorrhage in rats with 12 h, 3 days and 6 days of selective brain hypothermia. Exp. Neurol. 219, 156–162.10.1016/j.expneurol.2009.05.007Search in Google Scholar PubMed
Gao, F., Wang, S., Guo, Y., Wang, J., Lou, M., Wu, J., Ding, M., Tian, M., and Zhang, H. (2010). Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur. J. Nucl. Med. Mol. Imaging 37, 954–961.10.1007/s00259-009-1342-3Search in Google Scholar PubMed
Henkhaus, R.S., Gerner, E.W., and Ignatenko, N.A. (2008). Kallikrein 6 is a mediator of K-RAS-dependent migration of colon carcinoma cells. Biol. Chem. 389, 757–764.10.1515/BC.2008.087Search in Google Scholar PubMed PubMed Central
Holmin, S. and Mathiesen, T. (2000). Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J. Neurosurg. 92, 108–120.10.3171/jns.2000.92.1.0108Search in Google Scholar PubMed
Kantyka, T., Latendorf, T., Wiedow, O., Bartels, J., Gläser, R., Dubin, G., Schröder, J.M., Potempa, J. and Meyer-Hoffert, U. (2009). Elafin is specifically inactivated by RgpB from Porphyromonas gingivalis by distinct proteolytic cleavage. Biol. Chem. 390, 1313–1320.10.1515/BC.2009.136Search in Google Scholar PubMed PubMed Central
Kawanishi, M., Kawai, N., Nakamura, T., Luo, C., Tamiya, T., and Nagao, S. (2008). Effect of delayed mild brain hypothermia on edema formation after intracerebral hemorrhage in rats. J. Stroke Cerebrovasc. Dis. 17, 187–195.10.1016/j.jstrokecerebrovasdis.2008.01.003Search in Google Scholar PubMed
Li, H. and Wang, D. (2011). Mild hypothermia improves ischemic brain function via attenuating neuronal apoptosis. Brain Res. 1368, 59–64.10.1016/j.brainres.2010.10.073Search in Google Scholar PubMed
Liew, H.K., Pang, C.Y., Hsu, C.W., Wang, M.J., Li, T.Y., Peng, H.F., Kuo, J.S., and Wang, J.Y. (2012). Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats. J. Neuroinflamm. 9, 13.10.1186/1742-2094-9-13Search in Google Scholar PubMed PubMed Central
Lin, J.L., Huang, Y.H., Shen, Y.C., Huang, H.C., and Liu, P.H. (2010). Ascorbic acid prevents blood-brain barrier disruption and sensory deficit caused by sustained compression of primary somatosensory cortex. J. Cereb. Blood. Flow. Metab. 30, 1121–1136.10.1038/jcbfm.2009.277Search in Google Scholar PubMed PubMed Central
Liu, W.Y., Wang, Z.B., Zhang, L.C., Wei, X., and Li, L. (2012). Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci. Ther. 18, 609–615.10.1111/j.1755-5949.2012.00340.xSearch in Google Scholar PubMed PubMed Central
MacLellan, C.L., Girgis, J., and Colbourne, F. (2004). Delayed onset of prolonged hypothermia improves outcome after intracerebral hemorrhage in rats. J. Cereb. Blood Flow Metab. 24, 432–440.10.1097/00004647-200404000-00008Search in Google Scholar PubMed
Maier, C.M., Sun, G.H., Kunis, D., Yenari, M.A., and Steinberg, G.K. (2001). Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J. Neurosurg. 94, 90–96.10.3171/jns.2001.94.1.0090Search in Google Scholar PubMed
Mayer, S.A., Brun, N.C., Begtrup, K., Broderick, J., Davis, S., Diringer, M.N., Skolnick, B.E., Steiner, T., and FAST Trial Investigators (2008). Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 358, 2127–2137.10.1056/NEJMoa0707534Search in Google Scholar PubMed
Pyrgos, V., Mickiene, D., Sein, T., Cotton, M., Fransesconi, A., Mizrahi, I., Donoghue, M., Bundrant, N., Kim, S.Y., Hardwick, M., et al. (2010). Effects of immunomodulatory and organism-associated molecules on the permeability of an in vitro blood-brain barrier model to amphotericin B and fluconazole. Antimicrob. Agents Chemother. 54, 1305–1310.10.1128/AAC.01263-09Search in Google Scholar PubMed PubMed Central
Sacco, S., Marini, C., Toni, D., Olivieri, L., and Carolei, A. (2009). Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke 40, 394–399.10.1161/STROKEAHA.108.523209Search in Google Scholar PubMed
Sangha, N. and Gonzales, N.R. (2011). Treatment targets in intracerebral hemorrhage. Neurotherapeutics 8, 374–387.10.1007/s13311-011-0055-zSearch in Google Scholar PubMed PubMed Central
Schubert, A. (1995). Side effects of mild hypothermia. J. Neurosurg. Anesthesiol. 7, 139–147.10.1097/00008506-199504000-00021Search in Google Scholar PubMed
Shankaran, S., Laptook, A.R., Ehrenkranz, R.A., Tyson, J.E., McDonald, S.A., Donovan, E.F., Fanaroff, A.A., Poole, W.K., Wright, L.L., Higgins, R.D., et al. (2005). Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584.10.1056/NEJMcps050929Search in Google Scholar PubMed
Sinclair, H.L. and Andrews, P.J. (2010). Bench-to-bedside review: hypothermia in traumatic brain injury. Crit. Care 14, 204.10.1186/cc8220Search in Google Scholar PubMed PubMed Central
Staykov, D., Wagner, I., Volbers, B., Hauer, E.M., Doerfler, A., Schwab, S., and Bardutzky, J. (2011). Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke 42, 2625–2629.10.1161/STROKEAHA.111.618611Search in Google Scholar PubMed
Taya, K., Marmarou, C.R., Okuno, K., Prieto, R., and Marmarou, A. (2010). Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J. Neurotrauma 27, 229–239.10.1089/neu.2009.0933Search in Google Scholar PubMed PubMed Central
Tsukita, S., Yamazaki, Y., Katsuno, T., Tamura, A., and Tsukita, S. (2008). Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27, 6930–6938.10.1038/onc.2008.344Search in Google Scholar PubMed
Wagner, K.R., Beiler, S., Beiler, C., Kirkman, J., Casey, K., Robinson, T., Larnard, D., de Courten-Myers, G.M., Linke, M.J., and Zuccarello, M. (2006). Delayed profound local brain hypothermia markedly reduces interleukin-1β gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir. (Suppl.) 96, 177–182.10.1007/3-211-30714-1_39Search in Google Scholar PubMed
Wu, H., Zhang, Z., Li, Y., Zhao, R., Li, H., Song, Y., Qi, J., and Wang, J. (2010). Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem. Int. 57, 248–253.10.1016/j.neuint.2010.06.002Search in Google Scholar PubMed PubMed Central
Xi, G., Keep, R.F., and Hoff, J.T. (2006). Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 5, 53–63.10.1016/S1474-4422(05)70283-0Search in Google Scholar PubMed
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Reviews
- Endothelial progenitor cells in coronary artery disease
- Current methods for the isolation of extracellular vesicles
- S-glutathionylation: relevance in diabetes and potential role as a biomarker
- Site-directed spin labeling EPR spectroscopy in protein research
- What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition
- Research Articles/Short Communications
- Molecular Medicine
- Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats
- Induction of the DNA damage response by IAP inhibition triggers natural immunity via upregulation of NKG2D ligands in Hodgkin lymphoma in vitro
- Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment
- Cell Biology and Signaling
- Human carbonic anhydrase VII protects cells from oxidative damage
- Proteolysis
- Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells
Articles in the same Issue
- Masthead
- Masthead
- Reviews
- Endothelial progenitor cells in coronary artery disease
- Current methods for the isolation of extracellular vesicles
- S-glutathionylation: relevance in diabetes and potential role as a biomarker
- Site-directed spin labeling EPR spectroscopy in protein research
- What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition
- Research Articles/Short Communications
- Molecular Medicine
- Effects of selective hypothermia on blood-brain barrier integrity and tight junction protein expression levels after intracerebral hemorrhage in rats
- Induction of the DNA damage response by IAP inhibition triggers natural immunity via upregulation of NKG2D ligands in Hodgkin lymphoma in vitro
- Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment
- Cell Biology and Signaling
- Human carbonic anhydrase VII protects cells from oxidative damage
- Proteolysis
- Cathepsin S generates soluble CX3CL1 (fractalkine) in vascular smooth muscle cells