Startseite Lebenswissenschaften Endothelial progenitor cells in coronary artery disease
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Endothelial progenitor cells in coronary artery disease

  • Michael Donahue , Cristina Quintavalle , Giovanni Alfonso Chiariello , Gerolama Condorelli und Carlo Briguori

    Carlo Briguori gained his bachelor degree in Medicine and Surgery at the “Federico II” University School of Medicine in Naples. In 1995 he got his Board Certification in Cardiology at the “Federico II” University School of Medicine in Naples. In 2000 he received his PhD in Pathophysiology of Cardiovascular System at the University School of Modena (Italy).

    From 1999 to 2002 he was research fellow in Interventional Cardiology, at the Laboratory of Interventional Cardiology in San Raffaele Hospital in Milan, under the guidance of Antonio Colombo. Since 2002 he has been chief of the Laboratory of Interventional Cardiology at the Clinica Mediterranea in Naples, Italy. At present Dr. Briguori is also consultant and co-director of clinical research at the Laboratory of Interventional Cardiology, “Vita e Salute” University, San Raffaele Hospital, Milan.

    Dr. Briguori is a member of the Working Group on Interventional Cardiology & Coronary Pathophysiology of the European Society of Cardiology, Italian Society of Cardiology, Fellow of Society for Cardiovascular Angiography and Interventions (SCAI) and Italian Society of Interventional Cardiology. He is referee of some of the most prestigious international journals in the field of cardiovascular disease (Annals of Internal Medicine, Lancet, Circulation, Journal of the American College of Cardiology, American Journal of Cardiology, European Heart Journal and Heart). In 2008 he received the Best Paper Award: Clinical Science during the American Heart Association meeting in New Orleans (Florida) for the REMEDIAL trial.

    Dr. Briguori is author and co-author of more than 150 studies published in some of the most prestigious international journals in the field of cardiovascular disease. The principal fields of interest are 1) contrast agent associated nephrotoxicity, 2) coronary angioplasty in patients with diabetes mellitus, 3) prevention of peri-procedural complication in percutaneous coronary interventions, and 4) therapeutic myocardial angiogenesis.

    EMAIL logo
Veröffentlicht/Copyright: 21. Juni 2013

Abstract

In the last two decades a great deal of evidence has been collected on the key role of endothelial progenitor cells (EPC) in the mechanisms of vascular healing. The role of EPC as a marker of vascular health and prognosis of cardiovascular disease is already consolidated. This review aims to examine and evaluate recent data regarding EPC, as biomarkers, prognostic factor and potential therapy in cardiovascular disease.


Corresponding author: Carlo Briguori, Laboratory of Interventional Cardiology, Clinica Mediterranea, Via Orazio, 2, I-80121 Naples, Italy

About the author

Carlo Briguori

Carlo Briguori gained his bachelor degree in Medicine and Surgery at the “Federico II” University School of Medicine in Naples. In 1995 he got his Board Certification in Cardiology at the “Federico II” University School of Medicine in Naples. In 2000 he received his PhD in Pathophysiology of Cardiovascular System at the University School of Modena (Italy).

From 1999 to 2002 he was research fellow in Interventional Cardiology, at the Laboratory of Interventional Cardiology in San Raffaele Hospital in Milan, under the guidance of Antonio Colombo. Since 2002 he has been chief of the Laboratory of Interventional Cardiology at the Clinica Mediterranea in Naples, Italy. At present Dr. Briguori is also consultant and co-director of clinical research at the Laboratory of Interventional Cardiology, “Vita e Salute” University, San Raffaele Hospital, Milan.

Dr. Briguori is a member of the Working Group on Interventional Cardiology & Coronary Pathophysiology of the European Society of Cardiology, Italian Society of Cardiology, Fellow of Society for Cardiovascular Angiography and Interventions (SCAI) and Italian Society of Interventional Cardiology. He is referee of some of the most prestigious international journals in the field of cardiovascular disease (Annals of Internal Medicine, Lancet, Circulation, Journal of the American College of Cardiology, American Journal of Cardiology, European Heart Journal and Heart). In 2008 he received the Best Paper Award: Clinical Science during the American Heart Association meeting in New Orleans (Florida) for the REMEDIAL trial.

Dr. Briguori is author and co-author of more than 150 studies published in some of the most prestigious international journals in the field of cardiovascular disease. The principal fields of interest are 1) contrast agent associated nephrotoxicity, 2) coronary angioplasty in patients with diabetes mellitus, 3) prevention of peri-procedural complication in percutaneous coronary interventions, and 4) therapeutic myocardial angiogenesis.

References

Aicher, A., Brenner, W., Zuhayra, M., Badorff, C., Massoudi, S., Assmus, B., Eckey, T., Henze, E., Zeiher, A.M., and Dimmeler, S. (2003). Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107, 2134–2139.10.1161/01.CIR.0000062649.63838.C9Suche in Google Scholar PubMed

Amsalem, Y., Mardor, Y., Feinberg, M.S., Landa, N., Miller, L., Daniels, D., Ocherashvilli, A., Holbova, R., Yosef, O., Barbash, I.M., et al. (2007). Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116, I-38–I-45.10.1161/CIRCULATIONAHA.106.680231Suche in Google Scholar PubMed

Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M., and Isner, J.M. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 85, 221–228.10.1161/01.RES.85.3.221Suche in Google Scholar

Asahara, T., Murohara, T., Sullivan, A., Silver, M., Van Der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–966.10.1126/science.275.5302.964Suche in Google Scholar PubMed

Assmus, B., Rolf, A., Erbs, S., Elsasser, A., Haberbosch, W., Hambrecht, R., Tillmanns, H., Yu, J., Corti, R., Mathey, D.G., et al. (2010). Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction/Clinical Perspective. Circ Heart Fail 3, 89–96.10.1161/CIRCHEARTFAILURE.108.843243Suche in Google Scholar PubMed

Banerjee, S., Brilakis, E., Zhang, S., Roesle, M., Lindsey, J., Philips, B., Blewett, C.G., and Terada, L.S. (2006). Endothelial progenitor cell mobilization after percutaneous coronary intervention. Atherosclerosis 189, 70–75.10.1016/j.atherosclerosis.2006.04.026Suche in Google Scholar PubMed

Beijk, M.A.M., Klomp, M., Verouden, N.J.W., Van Geloven, N., Koch, K.T., Henriques, J.P.S., Baan, J., Vis, M.M., Scheunhage, E., Piek, J.J., et al. (2010). GenousTM endothelial progenitor cell capturing stent vs. the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centre, pilot study. Eur. Heart J. 31, 1055–1064.10.1093/eurheartj/ehp476Suche in Google Scholar PubMed PubMed Central

Bonello, L., Basire, A., Sabatier, F., Paganelli, F., and Dignat-George, F. (2006). Endothelial injury induced by coronary angioplasty triggers mobilization of endothelial progenitor cells in patients with stable coronary artery disease 1. J. Thromb. Haemost. 4, 979–981.10.1111/j.1538-7836.2006.01858.xSuche in Google Scholar PubMed

Bozdag-Turan, I., Turan, R., Paranskaya, L., Arsoy, N., Turan, C., Akin, I., Kische, S., Ortak, J., Schneider, H., Ludovicy, S., et al. (2012). Correlation between the functional impairment of bone marrow-derived circulating progenitor cells and the extend of coronary artery disease. J. Transl. Med. 10, 143.10.1186/1479-5876-10-143Suche in Google Scholar PubMed PubMed Central

Briguori, C., Testa, U., Riccioni, R., Colombo, A., Petrucci, E., Condorelli, G., Mariani, G., D’andrea, D., De Micco, F., Rivera, N.V., et al. (2010). Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. FASEB J. 24, 1981–1988.10.1096/fj.09-138198Suche in Google Scholar PubMed

Bystron, M., Cervinka, P., Spacek, R., Kvasnak, M., Jakabcin, J., Červinková, M., Kala, P., and Widimský, P. (2010). Randomized comparison of endothelial progenitor cells capture stent versus cobalt-chromium stent for treatment of ST-elevation myocardial infarction. Six-month clinical, angiographic, and IVUS follow-up. Catheter Cardiovasc. Interv. 76, 627–631.10.1002/ccd.22612Suche in Google Scholar PubMed

Caplan, A.I. and Dennis, J.E. (2006). Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084.10.1002/jcb.20886Suche in Google Scholar PubMed

Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395.10.1038/74651Suche in Google Scholar PubMed

Carr, C.A., Stuckey, D.J., Tatton, L., Tyler, D.J., Hale, S.J.M., Sweeney, D., Schneider, J.R.E., Martin-Rendon, E., Radda, G.K., Harding, S.E., et al. (2008). Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. Am. J. Physiol.-Heart C. 295, H533–H542.10.1152/ajpheart.00094.2008Suche in Google Scholar PubMed PubMed Central

Choi, S.H., Jung, S.Y., Kwon, S.M., and Baek, S.H. (2012). Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges. Circ. J. 76, 1307–1312.10.1253/circj.CJ-11-1479Suche in Google Scholar PubMed

Deschaseaux, F.D.R., Selmani, Z., Falcoz, P.-E., Mersin, N., Meneveau, N., Penfornis, A., Kleinclauss, C., Chocron, S., Etievent, J.-P., Tiberghien, P., et al. (2007). Two types of circulating endothelial progenitor cells in patients receiving long-term therapy by HMG-CoA reductase inhibitors. Eur. J. Pharmacol. 562, 111–118.10.1016/j.ejphar.2007.01.045Suche in Google Scholar PubMed

Dimmeler, S., Aicher, A., Vasa, M., Mildner-Rihm, C., Adler, K., Tiemann, M., Rutten, H., Fichtlscherer, S., Martin, H., and Zeiher, A.M. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397.10.1172/JCI200113152Suche in Google Scholar

Duckers, H.J., Silber, S., De Winter, R., Den Heijer, P., Rensing, B., Rau, M., Mudra, H., Benit, E., Verheye, S., Wijns, W., et al. (2007). Circulating endothelial progenitor cells predict angiographic and intravascular ultrasound outcome following percutaneous coronary interventions in the HEALING-II trial: evaluation of an endothelial progenitor cell capturing stent. EuroIntervention 2007, 1.Suche in Google Scholar

Eizawa, T., Ikeda, U., Murakami, Y., Matsui, K., Yoshioka, T., Takahashi, M., Muroi, K., and Shimada, K. (2004). Decrease in circulating endothelial progenitor cells in patients with stable coronary artery disease. Heart 90, 685–686.10.1136/hrt.2002.008144Suche in Google Scholar PubMed PubMed Central

Gaetani, R., Barile, L., Forte, E., Chimenti, I., Ionta, V., Di Consiglio, A., Miraldi, F., Frati, G., Messina, E., and Giacomello, A. (2009). New perspectives to repair a broken heart. Cardiovasc. Hematol. Agents Med. Chem. 7, 91–107.10.2174/187152509787847128Suche in Google Scholar PubMed

Garg, R., Tellez, A., Alviar, C., Granada, J., Kleiman, N.S., and Lev, E.I. (2008). The effect of percutaneous coronary intervention on inflammatory response and endothelial progenitor cell recruitment. Catheter Cardiovasc. Interv. 72, 205–209.10.1002/ccd.21611Suche in Google Scholar PubMed

George, J.C. (2010). Stem cell therapy in acute myocardial infarction: a review of clinical trials. Transl. Res. 155, 10–19.10.1016/j.trsl.2009.06.009Suche in Google Scholar PubMed

Gulati, R., Jevremovic, D., Peterson, T.E., Chatterjee, S., Shah, V., Vile, R.G., and Simari, R.D. (2003a). Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res. 93, 1023–1025.10.1161/01.RES.0000105569.77539.21Suche in Google Scholar PubMed

Gulati, R., Jevremovic, D., Peterson, T.E., Witt, T.A., Kleppe, L.S., Mueske, C.S., Lerman, A., Vile, R.G., and Simari, R.D. (2003b). Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation 108, 1520–1526.10.1161/01.CIR.0000089084.48655.49Suche in Google Scholar PubMed

Heil, M. and Schaper, W. (2004). Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ. Res. 95, 449–458.10.1161/01.RES.0000141145.78900.44Suche in Google Scholar PubMed

Hibbert, B., Ma, X., Pourdjabbar, A., Simard, T., Rayner, K., Sun, J., Chen, Y.-X., Filion, L., and O’Brien, E.R. (2011). Pre-procedural atorvastatin mobilizes endothelial progenitor cells: clues to the salutary effects of statins on healing of stented human arteries. Plos ONE. 6, e16413.10.1371/journal.pone.0016413Suche in Google Scholar PubMed PubMed Central

Hill, J.M., Zalos, G., Halcox, J.P.J., Schenke, W.H., Waclawiw, M.A., Quyyumi, A.A., and Finkel, T. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med. 348, 593–600.10.1056/NEJMoa022287Suche in Google Scholar PubMed

Hillebrands, J.-L., Klatter, F.A., Van Dijk, W.D., and Rozing, J. (2002). Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Nat. Med. 8, 194–195.10.1038/nm0302-194Suche in Google Scholar PubMed

Hirschi, K.K., Ingram, D.A., and Yoder, M.C. (2008). Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 28, 1584–1595.10.1161/ATVBAHA.107.155960Suche in Google Scholar PubMed PubMed Central

Hofmann, M., Wollert, K.C., Meyer, G.P., Menke, A., Arseniev, L., Hertenstein, B., Ganser, A., Knapp, W.H., and Drexler, H. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111, 2198–2202.10.1161/01.CIR.0000163546.27639.AASuche in Google Scholar PubMed

Hoover-Plow, J. and Gong, Y. (2012). Challenges for heart disease stem cell therapy. Vasc. Health Risk Manag. 8, 99–113.10.2147/VHRM.S25665Suche in Google Scholar PubMed PubMed Central

Hristov, M., Fach, C., Becker, C., Heussen, N., Liehn, E.A., Blindt, R.D., Hanrath, P., and Weber, C. (2007). Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis 192, 413–420.10.1016/j.atherosclerosis.2006.05.031Suche in Google Scholar PubMed

Hur, J., Yoon, C.-H., Kim, H.-S., Choi, J.-H., Kang, H.-J., Hwang, K.-K., Oh, B.-H., Lee, M.-M., and Park, Y.-B. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 288–293.10.1161/01.ATV.0000114236.77009.06Suche in Google Scholar PubMed

Inoue, T., Sata, M., Hikichi, Y., Sohma, R., Fukuda, D., Uchida, T., Shimizu, M., Komoda, H., and Node, K. (2007). Mobilization of CD34-positive bone marrow derived cells after coronary stent implantation: impact on restenosis. Circulation 115, 553–561.10.1161/CIRCULATIONAHA.106.621714Suche in Google Scholar PubMed

Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., et al. (2001). Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104, 1046–1052.10.1161/hc3501.093817Suche in Google Scholar PubMed

Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Amano, K., Iba, O., Imada, T., and Iwasaka, T. (2002). Improvement of collateral perfusion and regional function by implantation of peripheral blood mononuclear cells into ischemic hibernating myocardium. Arterioscler. Thromb. Vasc. Biol. 22, 1804–1810.10.1161/01.ATV.0000039168.95670.B9Suche in Google Scholar PubMed

Kawamoto, A., Tkebuchava, T., Yamaguchi, J.-I., Nishimura, H., Yoon, Y.-S., Milliken, C., Uchida, S., Masuo, O., Iwaguro, H., Ma, H., et al. (2003). Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107, 461–468.10.1161/01.CIR.0000046450.89986.50Suche in Google Scholar PubMed

Kipshidze, N., Dangas, G., Tsapenko, M., Moses, J., Leon, M.B., Kutryk, M., and Serruys, P. (2004). Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J. Am. Coll. Cardiol. 44, 733–739.Suche in Google Scholar

Kong, D., Melo, L.G., Gnecchi, M., Zhang, L., Mostoslavsky, G., Liew, C.C., Pratt, R.E., and Dzau, V.J. (2004a). Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110, 2039–2046.10.1161/01.CIR.0000143161.01901.BDSuche in Google Scholar PubMed

Kong, D., Melo, L.G., Mangi, A.A., Zhang, L., Lopez-Ilasaca, M., Perrella, M.A., Liew, C.C., Pratt, R.E., and Dzau, V.J. (2004b). Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation 109, 1769–1775.10.1161/01.CIR.0000121732.85572.6FSuche in Google Scholar PubMed

Körbling, M., Reuben, J.M., Gao, H., Lee, B.-N., Harris, D.M., Cogdell, D., Giralt, S.A., Khouri, I.F., Saliba, R.M., Champlin, R.E., et al. (2006). Recombinant human granulocyte – colony-stimulating factor – mobilized and apheresis-collected endothelial progenitor cells: a novel blood cell component for therapeutic vasculogenesis. Transfusion 46, 1795–1802.10.1111/j.1537-2995.2006.00985.xSuche in Google Scholar PubMed

Lambiase, P.D., Edwards, R.J., Anthopoulos, P., Rahman, S., Meng, Y.G., Bucknall, C.A., Redwood, S.R., Pearson, J.D., and Marber, M.S. (2004). Circulating humoral factors and endothelial progenitor cells in patients with differing coronary collateral support. Circulation 109, 2986–2992.10.1161/01.CIR.0000130639.97284.ECSuche in Google Scholar PubMed

Laufs, U., Werner, N., Link, A., Endres, M., Wassmann, S., Jurgens, K., Miche, E., Bohm, M., and Nickenig, G. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109, 220–226.10.1161/01.CIR.0000109141.48980.37Suche in Google Scholar PubMed

Laufs, U., Urhausen, A., Werner, N., Scharhag, J.R., Heitz, A., Kissner, G., Bohm, M., Kindermann, W., and Nickenig, G. (2005). Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur. J. Cardiovasc. Prev. Rehabil. 12, 407–414.10.1097/01.hjr.0000174823.87269.2eSuche in Google Scholar PubMed

Lee, J.M., Choe, W., Kim, B.-K., Seo, W.-W., Lim, W.-H., Kang, C.-K., Kyeong, S., Eom, K.D., Cho, H.-J., Kim, Y.-C., et al. (2012). Comparison of endothelialization and neointimal formation with stents coated with antibodies against CD34 and vascular endothelial-cadherin. Biomaterials 33, 8917–8927.10.1016/j.biomaterials.2012.08.066Suche in Google Scholar PubMed

Leone, A.M., Rutella, S., Giannico, M.B., Perfetti, M., Zaccone, V., Brugaletta, S., Garramone, B., Niccoli, G., Porto, I., Liuzzo, G., et al. (2008). Effect of intensive vs standard statin therapy on endothelial progenitor cells and left ventricular function in patients with acute myocardial infarction: statins for regeneration after acute myocardial infarction and PCI (STRAP) trial. Int. J. Cardiol. 130, 457–462.10.1016/j.ijcard.2008.05.036Suche in Google Scholar PubMed

Leone, A.M., Valgimigli, M., Giannico, M.B., Zaccone, V., Perfetti, M., D’amario, D., Rebuzzi, A.G., and Crea, F. (2009). From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur. Heart J. 30, 890–899.10.1093/eurheartj/ehp078Suche in Google Scholar PubMed

Lev, E.I., Kleiman, N.S., Birnbaum, Y., Harris, D., Korbling, M., and Estrov, Z. (2005). Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. J. Vasc. Res. 42, 408–414.10.1159/000087370Suche in Google Scholar PubMed

Lin, Y., Weisdorf, D.J., Solovey, A., and Hebbel, R.P. (2000). Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77.10.1172/JCI8071Suche in Google Scholar PubMed PubMed Central

Llevadot, J., Murasawa, S., Kureishi, Y., Uchida, S., Masuda, H., Kawamoto, A., Walsh, K., Isner, J.M., and Asahara, T. (2001). HMG-CoA reductase inhibitor mobilizes bone marrow derived endothelial progenitor cells. J. Clin. Invest. 108, 399–405.10.1172/JCI200113131Suche in Google Scholar

Ly, H.Q., Hoshino, K., Pomerantseva, I., Kawase, Y., Yoneyama, R., Takewa, Y., Fortier, A., Gibbs-Strauss, S.L., Vooght, C., Frangioni, J.V., et al. (2009). In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. Eur. Heart J. 30, 2861–2868.10.1093/eurheartj/ehp322Suche in Google Scholar PubMed PubMed Central

Marboeuf, P., Corseaux, D., Mouquet, F., Van Belle, E., Jude, B., and Susen, S. (2008). Inflammation triggers colony forming endothelial cell mobilization after angioplasty in chronic lower limb ischemia. J. Thromb. Haemost. 6, 195–197.10.1111/j.1538-7836.2007.02783.xSuche in Google Scholar

Martin-Rendon, E., Brunskill, S.J., Hyde, C.J., Stanworth, S.J., Mathur, A., and Watt, S.M. (2008). Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 29, 1807–1818.10.1093/eurheartj/ehn220Suche in Google Scholar PubMed

Masuda, H., Kalka, C., Takahashi, T., Yoshida, M., Wada, M., Kobori, M., Itoh, R., Iwaguro, H., Eguchi, M., Iwami, Y., et al. (2007). Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ. Res. 101, 598–606.10.1161/CIRCRESAHA.106.144006Suche in Google Scholar PubMed

Medina, R.J., O’Neill, C.L., Sweeney, M., Guduric-Fuchs, J., Gardiner, T.A., Simpson, D.A., and Stitt, A.W. (2010). Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med. Genomics 3, 1–13.10.1186/1755-8794-3-18Suche in Google Scholar PubMed PubMed Central

Meluzín, J., Mayer, J., Groch, L., Janousek, S., Hornácek, I., Hlinomaz, O., Kala, P., Panovský, R., Prásek, J., Kamínek, M., et al. (2006). Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am. Heart J. 152, 975.e9–975.e15.10.1016/j.ahj.2006.08.004Suche in Google Scholar PubMed

Michowitz, Y., Goldstein, E., Wexler, D., Sheps, D., Keren, G., and George, J. (2007). Circulating endothelial progenitor cells and clinical outcome in patients with congestive heart failure. Heart 93, 1046–1050.10.1136/hrt.2006.102657Suche in Google Scholar PubMed PubMed Central

Mills, N.L., Tura, O., Padfield, G.J., Millar, C., Lang, N.N., Stirling, D., Ludlam, C., Turner, M.L., Barclay, G.R., and Newby, D.E. (2009). Dissociation of phenotypic and functional endothelial progenitor cells in patients undergoing percutaneous coronary intervention. Heart 95, 2003–2008.10.1136/hrt.2008.163162Suche in Google Scholar PubMed

Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12, 459–465.10.1038/nm1391Suche in Google Scholar PubMed

Najjar, S.S., Rao, S.V., Melloni, C., Raman, S.V., Povsic, T.J., Melton, L., Barsness, G.W., Prather, K., Heitner, J.F., Kilaru, R., et al. (2011). Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. J. Am. Med. Assoc. 305, 1863–1872.10.1001/jama.2011.592Suche in Google Scholar PubMed PubMed Central

Pelliccia, F., Cianfrocca, C., Rosano, G., Mercuro, G., Speciale, G., and Pasceri, V. (2010). Role of endothelial progenitor cells in restenosis and progression of coronary atherosclerosis after percutaneous coronary intervention: a prospective study. JACC Cardiovas. Interv. 3, 78–86.10.1016/j.jcin.2009.10.020Suche in Google Scholar PubMed

Perin, E.C., Silva, G.V., Henry, T.D., Cabreira-Hansen, M.G., Moore, W.H., Coulter, S.A., Herlihy, J.P., Fernandes, M.R., Cheong, B.Y.C., Flamm, S.D., et al. (2011). A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am. Heart J. 161, 1078–1087.e3.10.1016/j.ahj.2011.01.028Suche in Google Scholar PubMed

Powell, T.M., Paul, J.D., Hill, J.M., Thompson, M., Benjamin, M., Rodrigo, M., Mccoy, J.P., Read, E.J., Khuu, H.M., Leitman, S.F., et al. (2005). Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 25, 296–301.10.1161/01.ATV.0000151690.43777.e4Suche in Google Scholar PubMed

Prater, D.N., Case, J., Ingram, D.A., and Yoder, M.C. (2007). Working hypothesis to redefine endothelial progenitor cells. Leukemia 21, 1141–1149.10.1038/sj.leu.2404676Suche in Google Scholar

Prunier, F., Biere, L.C., Gilard, M., Boschat, J., Mouquet, F.D.R., Bauchart, J.-J., Charbonnier, B., Genée, O., Guérin, P., Warin-Fresse, K., et al. (2012). Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial. Am. Heart J. 163, 200–207.e1.10.1016/j.ahj.2011.11.005Suche in Google Scholar

Reddy, M.K., Vasir, J.K., Hegde, G.V., Joshi, S.S., and Labhasetwar, V. (2007). Erythropoietin induces excessive neointima formation: a study in a rat carotid artery model of vascular injury. J. Cardiovasc. Pharmacol. Ther. 12, 237–247.10.1177/1074248406297326Suche in Google Scholar

Rehman, J., Li, J., Parvathaneni, L., Karlsson, G., Panchal, V.R., Temm, C.J., Mahenthiran, J., and March, K.L. (2004). Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells. J. Am. Coll. Cardiol. 43, 2314–2318.10.1016/j.jacc.2004.02.049Suche in Google Scholar

Rentrop, K.P., Cohen, M., Blanke, H., and Phillips, R.A. (1985). Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Am. Coll. Cardiol. 5, 587–592.10.1016/S0735-1097(85)80380-6Suche in Google Scholar

Risau, W. and Flamme, I. (1995). Vasculogenesis. Ann. Rev. Cell Dev. Biol. 11, 73–91.10.1146/annurev.cb.11.110195.000445Suche in Google Scholar PubMed

Robey, T.E., Saiget, M.K., Reinecke, H., and Murry, C.E. (2008). Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell Cardiol. 45, 567–581.10.1016/j.yjmcc.2008.03.009Suche in Google Scholar PubMed PubMed Central

Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kamper, U., Dimmeler, S., and Zeiher, A.M. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111, 2981–2987.10.1161/CIRCULATIONAHA.104.504340Suche in Google Scholar PubMed

Schober, A., Hoffmann, R., Opree, N., Knarren, S., Iofina, E., Hutschenreuter, G., Hanrath, P., and Weber, C. (2005). Peripheral CD34+ cells and the risk of in-stent restenosis in patients with coronary heart disease. Am. J. Cardiol. 96, 1116–1122.10.1016/j.amjcard.2005.06.042Suche in Google Scholar PubMed

Sekiguchi, H., Ii, M., and Losordo, D.W. (2009). The relative potency and safety of endothelial progenitor cells and unselected mononuclear cells for recovery from myocardial infarction and ischemia. J. Cell. Physiol. 219, 235–242.10.1002/jcp.21672Suche in Google Scholar PubMed

Shi, Q., Bhattacharya, V., Hong-De, W.M., and Sauvage, L.R. (2002). Utilizing granulocyte colony-stimulating factor to enhance vascular graft endothelialization from circulating blood cells. Ann Vasc. Surg. 16, 314–320.10.1007/s10016-001-0238-xSuche in Google Scholar PubMed

Sieveking, D.P., Buckle, A., Celermajer, D.S., and Ng, M.K.C. (2008). Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J. Am. Coll. Cardiol. 51, 660–668.10.1016/j.jacc.2007.09.059Suche in Google Scholar PubMed

Silber, S., Damman, P., Klomp, M., Beijk, M.A., Grisold, M., Ribeiro, E.E., Suryapranata, H., Wójcik, J., Hian, S.K., Tijssen, J.G., et al. (2011). Clinical results after coronary stenting with the genous™ bio-engineered R stent™: 12-month outcomes of the e-HEALING (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth) worldwide registry. EuroIntervention 6, 819–825.10.4244/EIJV6I7A141Suche in Google Scholar PubMed

Sorrentino, S.A., Bahlmann, F.H., Besler, C., Muller, M., Schulz, S., Kirchhoff, N., Doerries, C., Horvath, T., Limbourg, A., Limbourg, F., et al. (2007). Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116, 163–173.10.1161/CIRCULATIONAHA.106.684381Suche in Google Scholar PubMed

Strauer, B.E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R.V., Kogler, G., and Wernet, P. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106, 1913–1918.10.1161/01.CIR.0000034046.87607.1CSuche in Google Scholar PubMed

Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., Magner, M., Isner, J.M., and Asahara, T. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med. 5, 434–438.10.1038/7434Suche in Google Scholar PubMed

Takamiya, M., Okigaki, M., Jin, D., Takai, S., Nozawa, Y., Adachi, Y., Urao, N., Tateishi, K., Nomura, T., Zen, K., et al. (2006). Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler. Thromb. Vasc. Biol. 26, 751–757.10.1161/01.ATV.0000205607.98538.9aSuche in Google Scholar PubMed

Timmermans, F., Van Hauwermeiren, F., De Smedt, M., Raedt, R., Plasschaert, F., De Buyzere, M.L., Gillebert, T.C., Plum, J., and Vandekerckhove, B. (2007). Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol. 27, 1572–1579.10.1161/ATVBAHA.107.144972Suche in Google Scholar PubMed

Timmermans, F., Plum, J., Yöder, M.C., Ingram, D.A., Vandekerckhove, B., and Case, J. (2009). Endothelial progenitor cells: identity defined? J. Cell. Mol. Med. 13, 87–102.10.1111/j.1582-4934.2008.00598.xSuche in Google Scholar PubMed PubMed Central

Tsuzuki, M. (2009). Bone marrow-derived cells are not involved in reendothelialized endothelium as endothelial cells after simple endothelial denudation in mice. Basic Res. Cardiol. 104, 601–611.10.1007/s00395-009-0021-7Suche in Google Scholar PubMed

Urao, N., Okigaki, M., Yamada, H., Aadachi, Y., Matsuno, K., Matsui, A., Matsunaga, S., Tateishi, K., Nomura, T., Takahashi, T., et al. (2006). Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ. Res. 98, 1405–1413.10.1161/01.RES.0000224117.59417.f3Suche in Google Scholar PubMed

Vasa, M., Fichtlscherer, S., Adler, K., Aicher, A., Martin, H., Zeiher, A.M., and Dimmeler, S. (2001a). Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103, 2885–2890.10.1161/hc2401.092816Suche in Google Scholar PubMed

Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A.M., and Dimmeler, S. (2001b). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 89, e1–e7.10.1161/hh1301.093953Suche in Google Scholar PubMed

Voors, A.A., Belonje, A.M.S., Zijlstra, F., Hillege, H.L., Anker, S.D., Slart, R.H.J.A., Tio, R.A., Van’t Hof, A., Jukema, J.W., Peels, H.O.J., et al. (2010). A single dose of erythropoietin in ST-elevation myocardial infarction. Eur. Heart J. 31, 2593–2600.10.1093/eurheartj/ehq304Suche in Google Scholar PubMed

Walter, D.H., Rittig, K., Bahlmann, F.H., Kirchmair, R., Silver, M., Murayama, T., Nishimura, H., Losordo, D.W., Asahara, T., and Isner, J.M. (2002). Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105, 3017–3024.10.1161/01.CIR.0000018166.84319.55Suche in Google Scholar

Werner, N., Priller, J., Laufs, U., Endres, M., Böhm, M., Dirnagl, U., and Nickenig, G. (2002). Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler. Thromb. Vasc. Biol. 22, 1567–1572.10.1161/01.ATV.0000036417.43987.D8Suche in Google Scholar

Werner, N., Junk, S., Laufs, U., Link, A., Walenta, K., Bohm, M., and Nickenig, G. (2003). Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res. 93, e17–e24.10.1161/01.RES.0000083812.30141.74Suche in Google Scholar PubMed

Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., Böhm, M., and Nickenig, G. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med. 353, 999–1007.10.1056/NEJMoa043814Suche in Google Scholar PubMed

Wohrle, J., Merkle, N., Mailander, V., Nusser, T., Schauwecker, P., Von Scheidt, F., Schwarz, K., Bommer, M., Wiesneth, M., Schrezenmeier, H., et al. (2010). Results of intracoronary stem cell therapy after acute myocardial infarction. Am. J. Cardiol. 105, 804–812.10.1016/j.amjcard.2009.10.060Suche in Google Scholar PubMed

Xiao, Q., Kiechl, S., Patel, S., Oberhollenzer, F., Weger, S., Mayr, A., Metzler, B., Reindl, M., Hu, Y., Willeit, J., et al. (2007). Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis–results from a large population-based study. Plos One. 2, e975.10.1371/journal.pone.0000975Suche in Google Scholar PubMed PubMed Central

Yoder, M.C., Mead, L.E., Prater, D., Krier, T.R., Mroueh, K.N., Li, F., Krasich, R., Temm, C.J., Prchal, J.T., and Ingram, D.A. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801–1809.10.1182/blood-2006-08-043471Suche in Google Scholar PubMed PubMed Central

Yoshioka, T., Takahashi, M., Shiba, Y., Suzuki, C., Morimoto, H., Izawa, A., Ise, H., and Ikeda, U. (2006). Granulocyte colony-stimulating factor (G-CSF) accelerates reendothelialization and reduces neointimal formation after vascular injury in mice. Cardiovasc. Res. 70, 61–69.10.1016/j.cardiores.2005.12.013Suche in Google Scholar PubMed

Zhao, X., Huang, L., Yin, Y., Fang, Y., and Zhou, Y. (2007). Autologous endothelial progenitor cells transplantation promoting endothelial recovery in mice. Transplant Int. 20, 712–721.10.1111/j.1432-2277.2007.00497.xSuche in Google Scholar PubMed

Received: 2013-1-12
Accepted: 2013-6-20
Published Online: 2013-06-21
Published in Print: 2013-10-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 15.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0110/html
Button zum nach oben scrollen