Startseite Is the beta estradiol receptor receiving enough attention for its metabolic importance in postmenopause?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Is the beta estradiol receptor receiving enough attention for its metabolic importance in postmenopause?

  • Débora Santos Rocha EMAIL logo und Luiz Carlos Kucharski
Veröffentlicht/Copyright: 3. März 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The relationship between menopause and the development of metabolic diseases is well established. In postmenopause women, there is an expansion of visceral white adipose tissue (WATv), which highly contributes to the rise of circulating lipids. Meanwhile, muscle glucose uptake decreases and hepatic glucose production increases. Consequently, in the pancreas, lipotoxicity and glycotoxicity lead to deficient insulin production. These factors initiate an energy imbalance and enhance the probability of developing cardiovascular and metabolic diseases. Although the activation of estradiol receptors (ER) has been shown to be beneficial for the WAT stock pattern, leading to the insulin-sensitive phenotype, authors have described the risk of these receptors’ activation, contributing to neoplasia development. The selective activation of beta-type ER (ERβ) seems to be a promising strategy in the treatment of energy imbalance, acting on several tissues of metabolic importance and allowing an intervention with less risk for the development of estrogen-dependent neoplasia. However, the literature on the risks and benefits of selective ERβ activation still needs to increase. In this review, several aspects related to ERβ were considered, such as its physiological role in tissues of energy importance, beneficial effects, and risks of its stimulation during menopause. PubMed, SciELO, Cochrane, and Medline/Bireme databases were used in this study.

Highlights

  • – In menopause, the expansion of visceral white adipose tissue contributes to the rise of circulating lipids.

  • – Muscle glucose uptake decreases and hepatic glucose production increases in menopause.

  • – The energy imbalance and the enhanced probability of developing cardiovascular and metabolic diseases.

  • – The activation of estradiol receptors has been shown to be beneficial for the white adipose tissue stock pattern.

  • – It has been described the risk of estradiol receptors’ activation, contributing to neoplasia development.

  • – The selective activation of beta-type estradiol receptor seems to be a promising strategy, allowing an intervention with less risk for estrogen-dependent neoplasia.

  • – The literature on the risks and benefits of selective beta-estradiol receptor activation still needs to increase.

  • – Several physiological aspects related to estradiol beta-receptor need to be more investigated in tissues of energy importance.


Corresponding author: Dr Débora Santos Rocha (doctoral degree), Physiology Department, Federal University of Rio Grande do Sul, Sarmento Leite, 500, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil, Phone/Fax: +55 51 33083623, E-mail:

  1. Research funding: This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: Authors declare no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

References

1. Garaulet, M, Pérez-Llamas, F, Baraza, JC, Garcia-Prieto, MD, Fardy, PS, Tébar, FJ, et al.. Body fat distribution in pre- and post-menopausal women: metabolic and anthropometric variables. [Internet]. J Nutr Health Aging 2002;6:123–6. Available from: https://pubmed.ncbi.nlm.nih.gov/1323546/.Suche in Google Scholar

2. Regitz-Zagrosek, V, Lehmkuhl, E, Weickert, MO. Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol 2006;95:136–47.10.1007/s00392-006-0351-5Suche in Google Scholar PubMed

3. González-Granillo, M, Savva, C, Li, X, Ghosh Laskar, M, Angelin, B, Gustafsson, J-Å, et al.. Selective estrogen receptor (ER)β activation provokes a redistribution of fat mass and modifies hepatic triglyceride composition in obese male mice. Mol Cell Endocrinol 2020;502:110672. https://doi.org/10.1016/j.mce.2019.110672.Suche in Google Scholar PubMed

4. Poehlman, ET, Toth, MJ, Gardner, AW. Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med 1995;123:673–5.10.7326/0003-4819-123-9-199511010-00005Suche in Google Scholar PubMed

5. Lobo, RA. Metabolic syndrome after menopause and the role of hormones. Maturitas 2008;60:10–8.10.1016/j.maturitas.2008.02.008Suche in Google Scholar PubMed

6. Sharma, G, Mauvais-Jarvis, F, Prossnitz, ER. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. J Steroid Biochem Mol Biol 2018.10.1016/j.jsbmb.2017.02.012Suche in Google Scholar PubMed PubMed Central

7. Poitout, V, Robertson, RP. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 2008;29:351–66.10.1210/er.2007-0023Suche in Google Scholar PubMed PubMed Central

8. Cox-York, KA, Erickson, CB, Pereira, RI, Bessesen, DH, Van Pelt, RE. Region-specific effects of oestradiol on adipose-derived stem cell differentiation in post-menopausal women. J Cell Mol Med 2017;21:677–84.10.1111/jcmm.13011Suche in Google Scholar PubMed PubMed Central

9. Bechlioulis, A, Naka, KK, Kalantaridou, SN, Chatzikyriakidou, A, Papanikolaou, O, Kaponis, A, et al.. Short-term hormone therapy improves sCD40L and endothelial function in early menopausal women: potential role of estrogen receptor polymorphisms. Maturitas 2012;71:389–95.10.1016/j.maturitas.2012.01.001Suche in Google Scholar PubMed

10. Nicholson, CJ, Sweeney, M, Robson, SC, Taggart, MJ. Estrogenic vascular effects are diminished by chronological aging. Sci Rep 2017;7:12153.10.1038/s41598-017-12153-5Suche in Google Scholar PubMed PubMed Central

11. Livingstone, C, Collison, M. Sex steroids and insulin resistance. Clin Sci 2002;102:151–66. https://doi.org/10.1042/cs20010197.Suche in Google Scholar

12. De Los Angeles Carrasco-Ruiz, M, Hernandez-Aragon, LG, Chavez-Rios, JR, Rodriguez-Antolin, J, Pacheco, P, Martinez-Gomez, M, et al.. High estradiol differentially affects the expression of the glucose transporter type 4 in pelvic floor muscles of rats. Int Neurourol J 2018;22:161–8. https://doi.org/10.5213/inj.1836116.058.Suche in Google Scholar PubMed PubMed Central

13. Kawakami, M, Yokota-Nakagi, N, Uji, M, Yoshida, KI, Tazumi, S, Takamata, A, et al.. Estrogen replacement enhances insulin-induced as160 activation and improves insulin sensitivity in ovariectomized rats. Am J Physiol Endocrinol Metab 2018;315:E1296–1304. https://doi.org/10.1152/ajpendo.00131.2018.Suche in Google Scholar PubMed

14. Buniam, J, Chukijrungroat, N, Khamphaya, T, Weerachayaphorn, J, Saengsirisuwan, V. Estrogen and voluntary exercise attenuate cardiometabolic syndrome and hepatic steatosis in ovariectomized rats fed a high-fat high-fructose diet. Am J Physiol Endocrinol Metab 2019;316:E908–21. https://doi.org/10.1152/ajpendo.00466.2018.Suche in Google Scholar PubMed

15. Arnal, JF, Lenfant, F, Flouriot, G, Tremollières, F, Laurell, H, Fontaine, C, et al.. From in vivo gene targeting of oestrogen receptors to optimization of their modulation in menopause. Br J Pharmacol 2012;165:57–66.10.1111/j.1476-5381.2011.01538.xSuche in Google Scholar PubMed PubMed Central

16. Leitman, DC, Paruthiyil, S, Yuan, C, Herber, CB, Olshansky, M, Tagliaferri, M, et al.. Tissue-specific regulation of genes by estrogen receptors. Semin Reprod Med 2012;30:14–22.10.1055/s-0031-1299593Suche in Google Scholar PubMed

17. Cedó, L, Reddy, ST, Mato, E, Blanco-Vaca, F, Escolà-Gil, JC. HDL and LDL: potential new players in breast cancer development. J Clin Med 2019;8:853.10.3390/jcm8060853Suche in Google Scholar PubMed PubMed Central

18. Huang, B, Warner, M, Gustafsson, JÅ. Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol 2015;418(Pt 3):240–4.10.1016/j.mce.2014.11.015Suche in Google Scholar PubMed

19. Campello, R, Alves-Wagner, A, Lucas, T, Mori, R, Furuya, D, Porto, C, et al.. Estrogen receptor 1 agonist PPT stimulates Slc2a4 gene expression and improves insulin-induced glucose uptake in adipocytes. Curr Top Med Chem 2013;12:2059–69.10.2174/1568026611212190004Suche in Google Scholar

20. Caruntu, C, Mirica, A, Roșca, AE, Mirica, R, Caruntu, A, Tampa, M, et al.. The role of estrogens and estrogen receptors in melanoma development and progression. Acta Endocrinol 2016;12:234–41.10.4183/aeb.2016.234Suche in Google Scholar PubMed PubMed Central

21. Honma, N, Hosoi, T, Arai, T, Takubo, K. Estrogen and cancers of the colorectum, breast, and lung in postmenopausal women. Pathol Int 2015;65:451–9.10.1111/pin.12326Suche in Google Scholar PubMed

22. Lazari, MFM, Lucas, TFG, Yasuhara, F, Gomes, GRO, Siu, ER, Royer, C, et al.. Estrogen receptors and function in the male reproductive system. Arq Bras Endocrinol Metabol 2009;53:923–33.10.1590/S0004-27302009000800005Suche in Google Scholar

23. Balhuizen, A, Kumar, R, Amisten, S, Lundquist, I, Salehi, A. Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Mol Cell Endocrinol 2010;320:16–24.10.1016/j.mce.2010.01.030Suche in Google Scholar

24. Davis, KE, Carstens, EJ, Irani, BG, Gent, LM, Hahner, LM, Clegg, DJ. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm Behav 2014;66:196–207.10.1016/j.yhbeh.2014.02.004Suche in Google Scholar

25. Frank, A, Brown, LM, Clegg, DJ. The role of hypothalamic estrogen receptors in metabolic regulation. Front Neuroendocrinol 2014;35:550–7.10.1016/j.yfrne.2014.05.002Suche in Google Scholar

26. Harris, HA, Bapat, AR, Gonder, DS, Frail, DE. The ligand binding profiles of estrogen receptors α and β are species dependent. Steroids 2002;67:379–84.10.1016/S0039-128X(01)00194-5Suche in Google Scholar

27. Nilsson, S, Mäkelä, S, Treuter, E, Tujague, M, Thomsen, J, Andersson, G, et al.. Mechanisms of estrogen action. Physiol Rev 2001;81:1535–65.10.1152/physrev.2001.81.4.1535Suche in Google Scholar PubMed

28. Rettberg, JR, Yao, J, Brinton, RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 2014;35:8–30.10.1016/j.yfrne.2013.08.001Suche in Google Scholar PubMed PubMed Central

29. Diez-Perez, A. Selective estrogen receptor modulators (SERMS). [Internet]. Arq Bras Endocrinol Metabol 2006;50:720–34. Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0004-27302006000400017.10.1590/S0004-27302006000400017Suche in Google Scholar

30. Albertazzi, P. Purified phytoestrogens in postmenopausal bone health: is there a role for genistein? Climacteric 2002;5:190–6.10.1080/cmt.5.2.190.196Suche in Google Scholar

31. Liu, S, Mauvais-Jarvis, F. Minireview: estrogenic protection of β-cell failure in metabolic diseases. Endocrinology 2010;151:859–64.10.1210/en.2009-1107Suche in Google Scholar PubMed PubMed Central

32. Faulds, MH, Zhao, C, Dahlman-Wright, K, Gustafsson, JÅ. The diversity of sex steroid action: regulation of metabolism by estrogen signaling. J Endocrinol 2012;212:3–12.10.1530/JOE-11-0044Suche in Google Scholar PubMed

33. Barros, RPA, Gabbi, C, Morani, A, Warner, M, Gustafsson, JÅ. Participation of ERα and ERβ in glucose homeostasis in skeletal muscle and white adipose tissue. Am J Physiol Endocrinol Metab 2009;297:E124–33.10.1152/ajpendo.00189.2009Suche in Google Scholar PubMed

34. Park, YM, Erickson, C, Bessesen, D, Van Pelt, RE, Cox-York, K. Age- and menopause-related differences in subcutaneous adipose tissue estrogen receptor mRNA expression. Steroids 2017;121:17–21.10.1016/j.steroids.2017.03.001Suche in Google Scholar PubMed PubMed Central

35. Park, YM, Pereira, RI, Erickson, CB, Swibas, TA, Cox-York, KA, Van Pelt, RE. Estradiol-mediated improvements in adipose tissue insulin sensitivity are related to the balance of adipose tissue estrogen receptor α and β in postmenopausal women. PLoS One 2017;12:e0176446.10.1371/journal.pone.0176446Suche in Google Scholar PubMed PubMed Central

36. Savva, C, Korach-André, M. Estrogen receptor beta (ERβ) regulation of lipid homeostasis—does sex matter? Metabolites 2020;10:116.10.3390/metabo10030116Suche in Google Scholar PubMed PubMed Central

37. Barros, RPA, Gustafsson, JÅ. Estrogen receptors and the metabolic network. Cell Metab 2011;14:289–99. https://doi.org/10.1016/j.cmet.2011.08.005.Suche in Google Scholar PubMed

38. Handgraaf, S, Dusaulcy, R, Visentin, F, Philippe, J, Gosmain, Y. 17-β Estradiol regulates proglucagon-derived peptide secretion in mouse and human α- and L cells. JCI insight 2018;3:e98569.10.1172/jci.insight.98569Suche in Google Scholar PubMed PubMed Central

39. Bailey, CJ, Ahmed-Sorour, H. Role of ovarian hormones in the long-term control of glucose homeostasis – effects on insulin secretion. Diabetologia 1980;19:475–81. https://doi.org/10.1007/bf00281829.Suche in Google Scholar

40. Gao, H, Fält, S, Sandelin, A, Gustafsson, JÅ, Dahlman-Wright, K. Genome-wide identification of estrogen receptor α-binding sites in mouse liver. Mol Endocrinol 2008;22:10–22. https://doi.org/10.1210/me.2007-0121.Suche in Google Scholar PubMed PubMed Central

41. DeFronzo, RA, Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009;32(Suppl 2):S157–163. https://doi.org/10.2337/dc09-s302.Suche in Google Scholar PubMed PubMed Central

42. Larsen, BA, Wassel, CL, Kritchevsky, SB, Strotmeyer, ES, Criqui, MH, Kanaya, AM, et al.. Association of muscle mass, area, and strength with incident diabetes in older adults: the Health ABC Study. J Clin Endocrinol Metab 2016;101:1847–55. https://doi.org/10.1210/jc.2015-3643.Suche in Google Scholar PubMed PubMed Central

43. Phillips, SK, Rook, KM, Siddle, NC, Bruce, SA, Woledge, RC. Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci 1993;84:95–8. https://doi.org/10.1042/cs0840095.Suche in Google Scholar PubMed

44. Greising, SM, Baltgalvis, KA, Lowe, DA, Warren, GL. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 2009;64A:1071–81. https://doi.org/10.1093/gerona/glp082.Suche in Google Scholar PubMed PubMed Central

45. Wiik, A, Ekman, M, Johansson, O, Jansson, E, Esbjörnsson, M. Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol 2009;131:181–9.10.1007/s00418-008-0512-xSuche in Google Scholar PubMed

46. Park, YM, Pereira, RI, Erickson, CB, Swibas, TA, Kang, C, Van Pelt, RE. Time since menopause and skeletal muscle estrogen receptors, PGC-1α, and AMPK. Menopause 2017;24:815–23.10.1097/GME.0000000000000829Suche in Google Scholar PubMed PubMed Central

47. Bunratsami, S, Udomuksorn, W, Kumarnsit, E, Vongvatcharanon, S, Vongvatcharanon, U. Estrogen replacement improves skeletal muscle performance by increasing parvalbumin levels in ovariectomized rats. Acta Histochem 2015;117:163–75.10.1016/j.acthis.2014.12.003Suche in Google Scholar PubMed

48. Galluzzo, P, Rastelli, C, Bulzomi, P, Acconcia, F, Pallottini, V, Marino, M. 17β-Estradiol regulates the first steps of skeletal muscle cell differentiation via ER-α-mediated signals. Am J Physiol Cell Physiol 2009;297:C1249–62.10.1152/ajpcell.00188.2009Suche in Google Scholar PubMed

49. Vasconsuelo, A, Milanesi, L, Boland, R. 17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol 2008;196:385–97. https://doi.org/10.1677/joe-07-0250.Suche in Google Scholar PubMed

50. Velders, M, Solzbacher, M, Schleipen, B, Laudenbach, U, Fritzemeier, KH, Diel, P. Estradiol and genistein antagonize the ovariectomy effects on skeletal muscle myosin heavy chain expression via ER-β mediated pathways. J Steroid Biochem Mol Biol 2010;120:53–9.10.1016/j.jsbmb.2010.03.059Suche in Google Scholar PubMed

51. Weigt, C, Hertrampf, T, Flenker, U, Hülsemann, F, Kurnaz, P, Fritzemeier, KH, et al.. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats. J Steroid Biochem Mol Biol 2015;154:12–22.10.1016/j.jsbmb.2015.06.002Suche in Google Scholar PubMed

52. Rusin, B, Kotwicki, T, Głodek, A, Andrusiewicz, M, Urbaniak, P, Kotwicka, M. Estrogen receptor 2 expression in back muscles of girls with idiopathic scoliosis – relation to radiological parameters. Stud Health Technol Inform. 2012;176:59–62.Suche in Google Scholar

53. Stovall, DW, Pinkerton, JAV. MF-101, an estrogen receptor beta agonist for the treatment of vasomotor symptoms in peri- and postmenopausal women. Curr Opin Invest Drugs 2009;10:365–71.Suche in Google Scholar

54. Tagliaferri, MA, Tagliaferri, MC, Creasman, JM, Koltun, WD. A selective estrogen receptor beta agonist for the treatment of hot flushes: phase 2 clinical trial. J Altern Complement Med 2016;22:722–8.10.1089/acm.2015.0021Suche in Google Scholar PubMed

55. Bansal, S, Chopra, K. Differential role of estrogen receptor modulators in depression-like behavior and memory impairment in rats with postmenopausal diabetes. Menopause 2015;22:1117–24.10.1097/GME.0000000000000435Suche in Google Scholar PubMed

56. Manente, AG, Pinton, G, Zonca, S, Cilli, M, Rinaldi, M, Daga, A, et al.. Intracellular lactate-mediated induction of estrogen receptor beta (ERß) in biphasic malignant pleural mesothelioma cells. Oncotarget 2015;6:25121–34.10.18632/oncotarget.4486Suche in Google Scholar PubMed PubMed Central

57. Liu, Y-S, Tsai, Y-L, Yeh, Y-L, Chung, L-C, Wen, S-Y, Kuo, C-H, et al.. Cell cycle regulation in the estrogen receptor beta (ESR2)-overexpressing Hep3B hepatocellular carcinoma cell line. Chin J Physiol 2015;58:134–40. https://doi.org/10.4077/CJP.2015.BAC239.Suche in Google Scholar PubMed

58. Mosli, HH, Esmat, A, Atawia, RT, Shoieb, SM, Mosli, HA, Abdel-Naim, AB. Metformin attenuates testosterone-induced prostatic hyperplasia in rats: a pharmacological perspective. Sci Rep 2015;5:15639.10.1038/srep15639Suche in Google Scholar PubMed PubMed Central

59. Morales, A, Duarte-Rojo, A, Ángeles-Ángeles, A, Mery, CM, Ruíz-Molina, JM, Díaz-Sánchez, V, et al.. The β form of the estrogen receptor is predominantly expressed in the papillary cystic neoplasm of the pancreas. Pancreas 2003;26:258–63.10.1097/00006676-200304000-00009Suche in Google Scholar PubMed

60. Pierdominici, M, Maselli, A, Locatelli, SL, Ciarlo, L, Careddu, G, Patrizio, M, et al.. Estrogen receptor ß ligation inhibits Hodgkin lymphoma growth by inducing autophagy. Oncotarget 2017;8:8522–35.10.18632/oncotarget.14338Suche in Google Scholar PubMed PubMed Central

61. Thangavel, P, Puga-Olguín, A, Rodríguez-Landa, JF, Zepeda, RC. Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules 2019;24:3892.10.3390/molecules24213892Suche in Google Scholar PubMed PubMed Central

62. Nguyen, DP, O’Malley, P, Al Hussein Al Awamlh, B, Furrer, MA, Mongan, NP, Robinson, BD, et al.. Association of aromatase with bladder cancer stage and long-term survival: new insights into the hormonal paradigm in bladder cancer. Clin Genitourin Canc 2017;15:256–262.e1.10.1016/j.clgc.2016.05.017Suche in Google Scholar PubMed

63. Qui, W-S, Yue, L, Ding, A-P, Sun, J, Yao, Y, Shen, Z, et al.. Co-expression of ER-beta and HER2 associated with poorer prognosis in primary breast cancer. Clin Invest Med 2009;32:E250–60. https://doi.org/10.25011/cim.v32i3.6114.Suche in Google Scholar PubMed

64. Fang, M, Wu, XC, Huang, W. Raloxifene upregulated mesangial cell MMP-2 activity via ER-β through transcriptional regulation. Cell Biochem Biophys 2013;67:607–13.10.1007/s12013-013-9548-1Suche in Google Scholar PubMed

65. Springwald, A, Lattrich, C, Skrzypczak, M, Goerse, R, Ortmann, O, Treeck, O. Identification of novel transcript variants of estrogen receptor α, β and progesterone receptor gene in human endometrium. Endocrine 2010;37:415–24.10.1007/s12020-010-9322-8Suche in Google Scholar PubMed

66. Collins, F, Itani, N, Esnal-Zufiaurre, A, Gibson, DA, Fitzgerald, C, Saunders, PTK. The ERβ5 splice variant increases oestrogen responsiveness of ERαpos Ishikawa cells. Endocr Relat Canc 2020;27:55–66.10.1530/ERC-19-0291Suche in Google Scholar PubMed PubMed Central

67. Mendoza, N, Morón, FJ, Quereda, F, Vázquez, F, Rivero, MC, Martínez-Astorquiza, T, et al.. A digenic combination of polymorphisms within ESR1 and ESR2 genes are associated with age at menarche in the Spanish population. Reprod Sci 2008;15:305–11.10.1177/1933719107314064Suche in Google Scholar PubMed

68. Mendoza, N, Sánchez-Borrego, R, Galiano, D, Salamanca, A, Mozas, J, Quereda, F, et al.. Multigenic combination of estrogen-related genes is associated with age at natural menopause in a Spanish population. Menopause Int 2009;15:150–6. https://doi.org/10.1258/mi.2009.009043.Suche in Google Scholar PubMed

69. He, LN, Xiong, DH, Liu, YJ, Zhang, F, Recker, RR, Deng, HW. Association study of the oestrogen signalling pathway genes in relation to age at natural menopause. J Genet 2007;86:269–76.10.1007/s12041-007-0034-7Suche in Google Scholar PubMed

70. Kuźbicka, K, Rachoń, D, Woziwodzka, A, Rybicka, M, Bielawski, KP. Associations of ESR1 and ESR2 gene polymorphisms with metabolic syndrome and its components in postmenopausal women. Maturitas 2018;115:97–102.10.1016/j.maturitas.2018.06.017Suche in Google Scholar PubMed

71. Zhao, T, Zhang, D, Liu, Y, Zhou, D, Chen, Z, Yang, Y, et al.. Association between ESR1 and ESR2 gene polymorphisms and hyperlipidemia in Chinese Han postmenopausal women. J Hum Genet 2010;55:50–4.10.1038/jhg.2009.122Suche in Google Scholar PubMed

72. Ntukidem, NI, Nguyen, AT, Stearns, V, Rehman, M, Schott, A, Skaar, T, et al.. Estrogen receptor genotypes, menopausal status, and the lipid effects of tamoxifen. Clin Pharmacol Ther 2008;83:702–10.10.1038/sj.clpt.6100343Suche in Google Scholar PubMed PubMed Central

73. Almeida, S, Franken, N, Zandoná, MR, Osório-Wender, MC, Hutz, MH. Estrogen receptor 2 and progesterone receptor gene polymorphisms and lipid levels in women with different hormonal status. Pharmacogenomics J 2005;5:30–4.10.1038/sj.tpj.6500272Suche in Google Scholar PubMed

74. Sowers, MFR, Wilson, AL, Karvonen-Gutierrez, CA, Kardia, SR. Sex steroid hormone pathway genes and health-related measures in women of 4 races/ethnicities: the Study of Women’s Health across the Nation (SWAN). Am J Med 2006;119(9 Suppl 1):S103–10.10.1016/j.amjmed.2006.07.012Suche in Google Scholar PubMed

75. Lo, JC, Zhao, X, Scuteri, A, Brockwell, S, Sowers, MFR. The association of genetic polymorphisms in sex hormone biosynthesis and action with insulin sensitivity and diabetes mellitus in women at midlife. Am J Med 2006;119(9 Suppl 1):S69–78.10.1016/j.amjmed.2006.07.009Suche in Google Scholar PubMed

76. Smiderle, L, Mattevi, VS, Giovenardi, M, Wender, MCO, Hutz, MH, Almeida, S. Are polymorphisms in oestrogen receptors genes associated with lipid levels in response to hormone therapy? Gynecol Endocrinol 2012;28:644–8.10.3109/09513590.2011.650767Suche in Google Scholar PubMed

77. Tsezou, A, Tzetis, M, Gennatas, C, Giannatou, E, Pampanos, A, Malamis, G, et al.. Association of repeat polymorphisms in the estrogen receptors alpha, beta (ESR1, ESR2) and androgen receptor (AR) genes with the occurrence of breast cancer. Breast 2008;17:159–66.10.1016/j.breast.2007.08.007Suche in Google Scholar PubMed

78. Son, BH, Kim, MK, Yun, YM, Kim, HJ, Yu, JH, Ko, BS, et al.. Genetic polymorphism of ESR1 rs2881766 increases breast cancer risk in Korean women. J Cancer Res Clin Oncol 2015;141:633–45.10.1007/s00432-014-1849-2Suche in Google Scholar PubMed

79. Lurie, G, Wilkens, LR, Thompson, PJ, Shvetsov, YB, Matsuno, RK, Carney, ME, et al.. Estrogen receptor beta rs1271572 polymorphism and invasive ovarian carcinoma risk: pooled analysis within the ovarian cancer association consortium. PLoS One 2011;6:e20703.10.1371/journal.pone.0020703Suche in Google Scholar PubMed PubMed Central

80. Passarelli, MN, Phipps, AI, Potter, JD, Makar, KW, Coghill, AE, Wernli, KJ, et al.. Common single-nucleotide polymorphisms in the estrogen receptor β promoter are associated with colorectal cancer survival in postmenopausal women. Cancer Res 2013;73:767–75. https://doi.org/10.1158/0008-5472.can-12-2484.Suche in Google Scholar

81. Lin, JH, Manson, JAE, Kraft, P, Cochrane, BB, Gunter, MJ, Chlebowski, RT, et al.. Estrogen and progesterone-related gene variants and colorectal cancer risk in women. BMC Med Genet 2011;12:78. https://doi.org/10.1158/1940-6207.prev-11-a67.Suche in Google Scholar

82. Greendale, GA, Chu, J, Ferrell, R, Randolph, JF, Johnston, JM, Sowers, MFR. The association of bone mineral density with estrogen receptor gene polymorphisms. Am J Med 2006;119(9 Suppl 1):S79–86.10.1016/j.amjmed.2006.07.011Suche in Google Scholar PubMed

83. Rivadeneira, F, Van Meurs JBJ, Kant, J, Zillikens, MC, Stolk, L, Beck, TJ, et al.. Estrogen receptor β (ESR2) polymorphisms in interaction with estrogen receptor α (ESR1) and insulin-like growth factor I (IGF1) variants influence the risk of fracture in postmenopausal women. J Bone Miner Res 2006;21:1443–56.10.1359/jbmr.060605Suche in Google Scholar PubMed

84. Gutiérrez-Muñoz, M, Fajardo-Araujo, ME, González-Pérez, EG, Aguirre-Arzola, VE, Solís-Ortiz, S. Facial sadness recognition is modulated by estrogen receptor gene polymorphisms in healthy females. Brain Sci 2018;8:219.10.3390/brainsci8120219Suche in Google Scholar PubMed PubMed Central

85. Fehsel, K, Schikowski, T, Jänner, M, Hüls, A, Voussoughi, M, Schulte, T, et al.. Estrogen receptor beta polymorphisms and cognitive performance in women: associations and modifications by genetic and environmental influences. J Neural Transm 2016;123:1369–79.10.1007/s00702-016-1620-8Suche in Google Scholar PubMed

86. Zhang, J, Chen, L, Ma, J, Qiao, Z, Zhao, M, Qi, D, et al.. Interaction of estrogen receptor β and negative life events in susceptibility to major depressive disorder in a Chinese Han female population. J Affect Disord 2017;2058:628–33.10.1016/j.jad.2016.08.083Suche in Google Scholar PubMed

87. Bansal, S, Chopra, K. Distinct role of estrogen receptor-alpha and beta on postmenopausal diabetes-induced vascular dysfunction. Gen Comp Endocrinol 2014;206:51–9.10.1016/j.ygcen.2014.06.013Suche in Google Scholar PubMed

88. Barreto-Andrade, JN, de Fátima, LA, Campello, RS, Guedes, JAC, de Freitas, HS, Okamoto, MM, et al.. Estrogen receptor 1 (ESR1) enhances Slc2a4/GLUT4 expression by a SP1 cooperative mechanism. Int J Med Sci 2018;15:1320–8.10.7150/ijms.26774Suche in Google Scholar PubMed PubMed Central

89. Kur, P, Kolasa-Wołosiuk, A, Misiakiewicz-Has, K, Wiszniewska, B. Sex hormone-dependent physiology and diseases of liver. Int J Environ Res Public Health 2020;17:2620. https://doi.org/10.3390/ijerph17082620.Suche in Google Scholar PubMed PubMed Central

90. Cassidy, A. Potential risks and benefits of phytoestrogen-rich diets. Int J Vitam Nutr Res 2003;73:120–6.10.1024/0300-9831.73.2.120Suche in Google Scholar PubMed

91. Wolters, M, Hahn, A. Sojaisoflavone – ein Therapeutikum gegen menopausale Beschwerden? [Internet]. Wien Med Wochenschr 2004;154:334–41. https://doi.org/10.1007/s10354-004-0083-y.Suche in Google Scholar PubMed

92. Sankar, P, Zachariah, B, Vickneshwaran, V, Jacob, SE, Sridhar, MG. Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: the molecular mechanisms. Exp Gerontol 2015;63:67–75.10.1016/j.exger.2015.02.001Suche in Google Scholar PubMed

93. Andres, S, Hansen, U, Niemann, B, Palavinskas, R, Lampen, A. Determination of the isoflavone composition and estrogenic activity of commercial dietary supplements based on soy or red clover. Food Funct 2015;6:2017–25.10.1039/C5FO00308CSuche in Google Scholar PubMed

94. McCabe, LT, Zidon, TM, Welly, RJ, Porter, JW, Winn, NC, Stricklin, OE, et al.. Role of estrogen receptor alpha in protective effects of soy in adipose tissue following ovariectomy. FASEB J 2017;31:646–39.10.1096/fasebj.31.1_supplement.646.39Suche in Google Scholar

95. Low, YL, Dunning, AM, Dowsett, M, Folkerd, E, Doody, D, Taylor, J, et al.. Phytoestrogen exposure is associated with circulating sex hormone levels in postmenopausal women and interact with ESR1 and NR1I2 gene variants. Cancer Epidemiol Biomarkers Prev 2007;16:1009–16.10.1158/1055-9965.EPI-06-0899Suche in Google Scholar PubMed

96. Huang, Z, Dong, J, Zeng, J, Li, W, Yang, X, Gong, J. [Changes of serum lipids after soy isoflavone and calcium supplementation in postmenopausal Chinese women with different ER-beta genotypes]. Wei Sheng Yan Jiu 2011;40:280–2.Suche in Google Scholar

97. Vafeiadou, K, Hall, WL, Williams, CM. Does genotype and equol-production status affect response to isoflavones? Data from a pan-European study on the effects of isoflavones on cardiovascular risk markers in post-menopausal women. Proc Nutr Soc 2006;65:106–15.10.1079/PNS2005483Suche in Google Scholar

98. Chatuphonprasert, W, Jarukamjorn, K, Putalun, W. Regulation of cancer-related genes – Cyp1a1, Cyp1b1, Cyp19, Nqo1 and Comt – expression in β-naphthoflavone-treated mice by miroestrol. J Pharm Pharmacol 2016;68:475–84.10.1111/jphp.12531Suche in Google Scholar PubMed

99. Su, Y, Simmen, RCM. Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates β-catenin signaling in mammary epithelial cells. Carcinogenesis 2009;30:331–9. https://doi.org/10.1158/0008-5472.sabcs-5082.Suche in Google Scholar

Received: 2020-11-09
Accepted: 2021-02-16
Published Online: 2021-03-03

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Articles
  3. Investigating the relationship between insulin resistance and adipose tissue in a randomized Tehrani population
  4. Antitumor effects of Auraptene in 4T1 tumor‐bearing Balb/c mice
  5. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis
  6. Assessment of AXL and mTOR genes expression in medullary thyroid carcinoma (MTC) cell line in relation with over expression of miR-144 and miR-34a
  7. Is there a relation between serum methylarginine levels and infertility?
  8. Evaluation of Y chromosome microdeletions and chromosomal anomalies in infertile men
  9. Threshold values of antibodies to estrogen, progesteron and benzo [a] pyrene as a risk factor for the development of endometriosis
  10. Altered methylarginine levels after surgery in subjects with multinodular goiter
  11. Effects of eight weeks exercise training on serum levels of adropin in male volleyball players
  12. Urinary bisphenol A in women with polycystic ovary syndrome – a possible suppressive effect on steroidogenesis?
  13. Complementary role of p57kip2 immunostaining in diagnosing hydatidiform mole subtypes
  14. Short Communications
  15. Circulating Inhibitory Factor 1 levels in adult patients with Prader–Willi syndrome
  16. Determinants of serum adiponectin levels: a cross-sectional study
  17. Case Report
  18. Prophylactic gonadectomy in 46 XY females; why, where and when?
  19. Review Article
  20. Is the beta estradiol receptor receiving enough attention for its metabolic importance in postmenopause?
Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2020-0079/html
Button zum nach oben scrollen