Abstract
Tumor markers are important tools for early diagnosis, prognosis, therapy response and endometrial cancer monitoring. A large number of molecular and pathologic markers have been described in types I and II endometrial cancers, which has served to define the main oncogenic, epidemiological, genetic, clinical and histopathological features. Ongoing attempts to stratify biological markers of endometrial cancer are presented. However, data on changes in tumor marker profiles in obesity-related endometrial cancer are scarce. Obesity is a pandemic in Western countries that has an important impact on endometrial cancers, albeit through not very well-defined mechanisms. Although endometrial cancer is more common in Caucasian women, higher mortality is found in African Americans who also show higher incidence of obesity. Here, we describe how obesity signals (estrogen, leptin, leptin induced-molecules, Notch; cytokines and growth factors) could affect endometrial cancer. Leptin signaling and its crosstalk may be associated to the more aggressive and poor prognosis type II endometrial cancer, which affects more postmenopausal and African-American women. In this regard, studies on expression of novel molecular markers (Notch, interleukin-1 and leptin crosstalk outcome) may provide essential clues for detection, prevention, treatment and prognosis.
Acknowledgments
The authors declare that they have no conflict of interests. This work was partially supported by the National Institutes of Health (NIH) and National Cancer Institute (NCI) grant U54 CA118638 and Department of Defense (DOD), U.S. Army Medical Research and Materiel Command, Congressionally Directed Medical Research Programs (CDMRP) Idea Award Number W81XWH-13-1-0382 to R.R.G.P.; the National Center for Advancing Translational Sciences of the NIH Award 5TL1TR000456-07 and 5T32HL103104-04 (MPI) to D.D-B; and facilities and support services at Morehouse School of Medicine (NIH RR03034 and 1C06 RR18386) and NIH/NCRR grant 1G12RR026250-03. We would like to thank Dr. Uma Krishnamurti, Allegheny General Hospital and Canonsburg General Hospital Pittsburgh, PA, for providing the glass slides showing MMMT with osteosarcoma and chondrosarcoma differentiation, and Dr. Florencia Elena Castaneda Valladares, Universidad Autonoma del Estado de Mexico, Obstetrics and Gynecology PY3, Hospital Regional ISSEMYM Tlalnepantla, for her contribution to Endometrial cancer markers section.
References
1. NIH/NCI website. http://www.cancer.gov. 2014.Suche in Google Scholar
2. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet 2005;366:491–505.10.1016/S0140-6736(05)67063-8Suche in Google Scholar
3. American Cancer Society, Statistics, 2014. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures, 2014.Suche in Google Scholar
4. Long B, Liu FW, Bristow RE. Disparities in uterine cancer epidemiology, treatment, and survival among African Americans in the United States. Gynecol Oncol 2013;130:652–9.10.1016/j.ygyno.2013.05.020Suche in Google Scholar
5. Schmandt RE, Iglesias DA, Co NN, Lu KH. Understanding obesity and endometrial cancer risk: opportunities for prevention. Am J Obstet Gynecol 2011;205:518–25.10.1016/j.ajog.2011.05.042Suche in Google Scholar
6. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta 2012;1825:207–22.10.1016/j.bbcan.2012.01.002Suche in Google Scholar
7. Johnson N, Bryant A, Miles T, Hogberg T, Cornes P. Adjuvant chemotherapy for endometrial cancer after hysterectomy. Cochrane Database Syst Rev 2011;(10):PMC4164379.10.1002/14651858.CD003175.pub2Suche in Google Scholar
8. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67–73.10.1038/nature12113Suche in Google Scholar
9. Hussein YR, Weigelt B, Levine DA, Schoolmeester JK, Dao LN, Balzer BL, Liles G, Karlan B, Köbel M, Lee CH, Soslow RA. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol 2014; doi:10.1038/modpathol.2014.143.10.1038/modpathol.2014.143Suche in Google Scholar
10. World Health Organization (WHO) 2014. http://www.who.int/cancer/prevention/en.Suche in Google Scholar
11. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003;348:1625–38.10.1056/NEJMoa021423Suche in Google Scholar
12. Michnovicz JJ, Hershcopf RJ, Naganuma H, Bradlow HL, Fishman J. Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med 1986;315:1305–9.10.1056/NEJM198611203152101Suche in Google Scholar
13. Terry PD, Rohan TE, Franceschi S, Weiderpass E. Cigarette smoking and the risk of endometrial cancer. Lancet Oncol 2002;3:470–80.10.1016/S1470-2045(02)00816-1Suche in Google Scholar
14. International Agency for Research on Cancer (2014). World Cancer Report 2014. World Health Organization. Chapter 5.12. ISBN 978-92-832-0429-9.Suche in Google Scholar
15. World Cancer Research Fund International. http://www.wcrf.org/int/cancer-facts-figures/link-between-lifestyle-cancer-risk/cancers-linked-greater-body-fatness.Suche in Google Scholar
16. Nevadunsky NS, Van Arsdale A, Strickler HD, Moadel A, Kaur G, Levitt J, Girda E, Goldfinger M, Goldberg GL, Einstein MH. Obesity and age at diagnosis of endometrial cancer. Obstet Gynecol 2014;124:300–6.10.1097/AOG.0000000000000381Suche in Google Scholar PubMed
17. Bellone S, Watts K, Cane S, Palmieri M, Cannon MJ, Burnett A, Roman JJ, Pecorelli S, Santin AD. High serum levels of interleukin-6 in endometrial carcinoma are associated with uterine serous papillary histology, a highly aggressive and chemotherapy-resistant variant of endometrial cancer. Gynecol Oncol 2005;98:92–8.10.1016/j.ygyno.2005.03.016Suche in Google Scholar PubMed
18. Prieto-Hontoria PL, Perez-Matute P, Fernandez-Galilea M, Bustos M, Martinez JA, Moreno-Aliaga MJ. Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta 2011;1807:664–78.10.1016/j.bbabio.2010.11.004Suche in Google Scholar PubMed
19. Zhang Y, Bellows CF, Kolonin MG. Adipose tissue-derived progenitor cells and cancer. World J Stem Cells 2010;2:103–13.10.4252/wjsc.v2.i5.103Suche in Google Scholar PubMed PubMed Central
20. Hlavna M, Kohut L, Lipkova J, Bienrtova-Vasku J, Dostalova Z, Chovanec J, Vasku A. Relationship of resistin levels with endometrial cancer risk. Neoplasma 2011;58:124–8.10.4149/neo_2011_02_124Suche in Google Scholar PubMed
21. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–84.10.1172/JCI29881Suche in Google Scholar PubMed PubMed Central
22. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007;56: 16–23.10.2337/db06-1076Suche in Google Scholar PubMed
23. Coxon A, Bolon B, Estrada J, Kaufman S, Scully S, Rattan A, Duryea D, Hu YL, Rex K, Pacheco E, Van G, Zack D, Feige U. Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis. Arthritis Rheum 2002;46:2604–12.10.1002/art.10546Suche in Google Scholar PubMed
24. Salven P, Hattori K, Heissig B, Rafii S. Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB J 2002;16:1471–3.10.1096/fj.02-0134fjeSuche in Google Scholar PubMed
25. Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 2003;100:2645–50.10.1073/pnas.0437939100Suche in Google Scholar PubMed PubMed Central
26. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992;119:629–41.10.1083/jcb.119.3.629Suche in Google Scholar
27. Bouloumie A, Drexler HC, Lafontan M, Busse R. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res 1998;83:1059–66.10.1161/01.RES.83.10.1059Suche in Google Scholar
28. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D’Andrea F, Molinari AM, Giugliano D. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 2002;105:804–9.10.1161/hc0702.104279Suche in Google Scholar
29. Vendramini-Costa DB, Carvalho JE. Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 2012;18:3831–52.10.2174/138161212802083707Suche in Google Scholar
30. Kacinski BM. CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 1995;27:79–85.10.3109/07853899509031941Suche in Google Scholar
31. Coussens LM, Werb Z. Inflammatory cells and cancer. Think different. J Exp Med 2001;193:f23–6.10.1084/jem.193.6.F23Suche in Google Scholar
32. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001;357:539–45.10.1016/S0140-6736(00)04046-0Suche in Google Scholar
33. Modugno F, Ness RB, Chen C, Weiss NS. Inflammation and endometrial cancer: a hypothesis. Cancer Epidemiol Biomarkers Prev 2005;14:2840–7.10.1158/1055-9965.EPI-05-0493Suche in Google Scholar PubMed
34. Smith HO, Stephens ND, Qualls CR, Fligelman T, Wang T, Lin CY, Burton E, Griffith JK, Pollard JW. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma. Mol Oncol 2013;7:41–54.10.1016/j.molonc.2012.07.002Suche in Google Scholar PubMed PubMed Central
35. Misso ML, Jang C, Adams J, Tran J, Murata Y, Bell R, Boon WC, Simpson ER, Davis SR. Adipose aromatase gene expression is greater in older women and is unaffected by postmenopausal estrogen therapy. Menopause 2005;12:210–5.10.1097/00042192-200512020-00016Suche in Google Scholar PubMed
36. Mu N, Zhu Y, Wang Y, Zhang H, Xue F. Insulin resistance: a significant risk factor of endometrial cancer. Gynecol Oncol 2012;125:751–7.10.1016/j.ygyno.2012.03.032Suche in Google Scholar
37. Wang T, Ning G, Bloomgarden Z. Diabetes and cancer relationships. J Diabetes 2013;5:378–90.10.1111/1753-0407.12057Suche in Google Scholar
38. Xu J, Messina JL. Crosstalk between growth hormone and insulin signaling. Vitam Horm 2009;80:125–53.10.1016/S0083-6729(08)00606-7Suche in Google Scholar
39. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 2014;14:329–41.10.1038/nrc3720Suche in Google Scholar PubMed
40. Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem 2000;275:18447–53.10.1074/jbc.M910345199Suche in Google Scholar PubMed
41. Brown KA, Hunger NI, Docanto M, Simpson ER. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat 2010;123:591–6.10.1007/s10549-010-0834-ySuche in Google Scholar PubMed
42. Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS One 2013;8:e61537.10.1371/journal.pone.0061537Suche in Google Scholar PubMed PubMed Central
43. Nevadunsky NS, Van Arsdale A, Strickler HD, Moadel A, Kaur G, Frimer M, Conroy E, Goldberg GL, Einstein MH. Metformin use and endometrial cancer survival. Gynecol Oncol 2014;132:236–40.10.1016/j.ygyno.2013.10.026Suche in Google Scholar PubMed PubMed Central
44. Ko EM, Walter P, Jackson A, Clark L, Franasiak J, Bolac C, Havrilesky LJ, Secord AA, Moore DT, Gehrig PA, Bae-Jump V. Metformin is associated with improved survival in endometrial cancer. Gynecol Oncol 2014;132:438–42.10.1016/j.ygyno.2013.11.021Suche in Google Scholar PubMed
45. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–32.10.1038/372425a0Suche in Google Scholar PubMed
46. Imagawa K, Numata Y, Katsuura G, Sakaguchi I, Morita A, Kikuoka S, Matumoto Y, Tsuji T, Tamaki M, Sasakura K, Teraoka H, Hosoda K, Ogawa Y, Nakao K. Structure-function studies of human leptin. J Biol Chem 1998;273:35245–9.10.1074/jbc.273.52.35245Suche in Google Scholar
47. Haalas JL. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997;94:8878–83.10.1073/pnas.94.16.8878Suche in Google Scholar
48. Wang Y, Kuropatwinski KK, White DW, Hawley TS, Hawley RG, Tartaglia LA, Baumann H. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. J Biol Chem 1997;272:16216–23.10.1074/jbc.272.26.16216Suche in Google Scholar
49. Lewandowski K, Horn R, O’Callaghan CJ, Dunlop D, Medley GF, O’Hare P, Brabant G. Free leptin, bound leptin, and soluble leptin receptor in normal and diabetic pregnancies. J Clin Endocrinol Metab 1999;84:300–6.10.1210/jcem.84.1.5401Suche in Google Scholar
50. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–71.10.1016/0092-8674(95)90151-5Suche in Google Scholar
51. Fruhbeck G. Intracellular signalling pathways activated by leptin. Biochem J 2006;393:7–20.10.1042/BJ20051578Suche in Google Scholar PubMed PubMed Central
52. Blenis J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 1993;90:5889–92.10.1073/pnas.90.13.5889Suche in Google Scholar PubMed PubMed Central
53. Takahashi Y, Okimura Y, Mizuno I, Iida K, Takahashi T, Kaji H, Abe H, Chihara K. Leptin induces mitogen-activated protein kinase dependent proliferation of C1H10T1/2 cells. J Biol Chem 1997;272:12897–900.10.1074/jbc.272.20.12897Suche in Google Scholar PubMed
54. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999;274:30059–65.10.1074/jbc.274.42.30059Suche in Google Scholar PubMed
55. Gonzalez RR, Caballero-Campo P, Jasper M, Mercader A, Devoto L, Pellicer A, Simon C. Leptin and leptin receptor are expressed in the human endometrium and endometrial leptin secretion is regulated by the human blastocyst. J Clin Endocrinol Metab 2000;85:4883–8.10.1210/jc.85.12.4883Suche in Google Scholar
56. Rosenbaum M, Nicolson M, Hirsch J, Heymsfield SB, Gallagher D, Chu F, Leibel RL. Effects of gender, body composition, and menopause on plasma concentrations of leptin. J Clin Endocrinol Metab 1996;81:3424–7.Suche in Google Scholar
57. Ahima RS, Osei SY. Leptin signaling. Physiol Behav 2004;81:223–41.10.1016/j.physbeh.2004.02.014Suche in Google Scholar PubMed
58. Ramos MP, Rueda BR, Leavis P, Gonzalez RR. Leptin serves as an upstream activator of an obligatory signaling cascade in the embryo-implantation process. Endocrinology 2005;146:694–701.10.1210/en.2004-1186Suche in Google Scholar PubMed
59. Wincewicz A, Koda M, Sulkowska M, Kanczuga-Koda L, Sulkowski S. Comparison of STAT3 with HIF-1alpha, Ob and ObR expressions in human endometrioid adenocarcinomas. Tissue Cell 2008;40:405–10.10.1016/j.tice.2008.04.004Suche in Google Scholar PubMed
60. Zhang Y, Liu L, Li C, Ai H. Correlation analysis between the expressions of leptin and its receptor (ObR) and clinicopathology in endometrial cancer. Cancer Biomark 2014;14:353–9.10.3233/CBM-140415Suche in Google Scholar PubMed
61. Carino C, Olawaiye AB, Cherfils S, Serikawa T, Lynch M, Rueda BR, Gonzalez RR. Leptin regulation of pro-angiogenic molecules in benign and cancer endometrial cells. Int J Cancer 2008;123:2782–90.10.1002/ijc.23887Suche in Google Scholar PubMed PubMed Central
62. Clemons M, Goss P. Estrogen and the risk of breast cancer. N Engl J Med 2001;344:276–85.10.1056/NEJM200101253440407Suche in Google Scholar PubMed
63. Welboren WJ, Slunnenberg HC, Sweep FC, Span PN. Identifying estrogen receptor target genes. Mol Oncol 2007;1:138–43.10.1016/j.molonc.2007.04.001Suche in Google Scholar PubMed PubMed Central
64. Kasiappan R, Sun Y, Lungchukiet P, Quarni W, Zhang X, Bai W. Vitamin D suppresses leptin stimulation of cancer growth through microRNA. Cancer Res 2014;74:6194–204.10.1158/0008-5472.CAN-14-1702Suche in Google Scholar PubMed PubMed Central
65. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 2011;1815:197–213.10.1016/j.bbcan.2010.12.002Suche in Google Scholar PubMed PubMed Central
66. Shih IeM, Wang TL. Notch signaling, gamma-secretase inhibitors and cancer therapy. Cancer Res 2007;67:1879–82.10.1158/0008-5472.CAN-06-3958Suche in Google Scholar PubMed
67. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003;194:237–55.10.1002/jcp.10208Suche in Google Scholar
68. Andersen P, Uosaki H, Shenje LT, Kwon C. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol 2012;22:257–65.10.1016/j.tcb.2012.02.003Suche in Google Scholar
69. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011;138:3593–612.10.1242/dev.063610Suche in Google Scholar
70. Jonusiene V, Sasnauskiene A, Lachej N, Kanopiene D, Dabkeviciene D, Sasnauskiene S, Kazbariene B, Didziapetriene J. Down-regulated expression of Notch signaling molecules in human endometrial cancer. Med Oncol 2013;30:438.10.1007/s12032-012-0438-ySuche in Google Scholar
71. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 2011;11:338–51.10.1038/nrc3035Suche in Google Scholar
72. Maillard I, Pear WS. Notch and cancer: best to avoid the ups and downs. Cancer Cell 2003;3:203–5.10.1016/S1535-6108(03)00052-7Suche in Google Scholar
73. Jayshree RS, Sreenivas A, Tessy M, Krishna S. Cell intrinsic and extrinsic factors in cervical carcinogenesis. Ind J Med Res 2009;130:286–95.Suche in Google Scholar
74. Cobellis L, Caprio F, Trabucco E, Mastrogiacomo A, Coppola G, Manente L, Colacurci N, De Falco M, De Luca A. The pattern of expression of Notch protein members in normal and pathological endometrium. J Anat 2008;213:464–72.10.1111/j.1469-7580.2008.00963.xSuche in Google Scholar PubMed PubMed Central
75. Mitsuhashi Y, Horiuchi A, Miyamoto T, Kashima H, Suzuki A, Shiozawa T. Prognostic significance of Notch signalling molecules and their involvement in the invasiveness of endometrial carcinoma cells. Histopathology 2012;60:826–37.10.1111/j.1365-2559.2011.04158.xSuche in Google Scholar PubMed
76. Feng YZ, Shiozawa T, Miyamoto T, Kashima H, Kurai M, Suzuki A, Ying-Song J, Konishi I. Overexpression of hedgehog signaling molecules and its involvement in the proliferation of endometrial carcinoma cells. Clin Cancer Res 2007;13:1389–98.10.1158/1078-0432.CCR-06-1407Suche in Google Scholar PubMed
77. Dellinger TH, Planutis K, Tewari KS, Holcombe RF. Role of canonical Wnt signaling in endometrial carcinogenesis. Exp Rev Anticancer Ther 2012;12:51–62.10.1586/era.11.194Suche in Google Scholar PubMed
78. Menezes MD, Oshima CT, Filho LB, Gomes TS, Barrezueta LF, Stavale JN, Gonçalves WJ. Canonical and noncanonical Wnt pathways: a comparison between endometrial cancer type I and atrophic endometrium in Brazil. Sao Paulo Med J 2011;129:320–4.10.1590/S1516-31802011000500007Suche in Google Scholar
79. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003;33:416–21.10.1038/ng1099Suche in Google Scholar
80. Tessitore L, Vizio B, Jenkins O, De Stefano I, Ritossa C, Argiles JM, Benedetto C, Mussa A. Leptin expression in colorectal and breast cancer patients. Int J Mol Med 2000;5:421–6.10.3892/ijmm.5.4.421Suche in Google Scholar
81. Yuan SS, Tsai KB, Chung YF, Chan TF, Yeh YT, Tsai LY, Su JH. Aberrant expression and possible involvement of the leptin receptor in endometrial cancer. Gynecol Oncol 2004;92:769–75.10.1016/j.ygyno.2003.11.043Suche in Google Scholar
82. Laud K, Gourdou I, Pessemesse L, Peyrat JP, Djiane J. Identification of leptin receptors in human breast cancer: functional activity in the T47-D breast cancer cell line. Mol Cell Endocrinol 2002;188:219–26.10.1016/S0303-7207(01)00678-5Suche in Google Scholar
83. Battle M, Gillespie C, Quarshie A, Lanier V, Harmon T, Wilson K, Torroella-Kouri M, Gonzalez-Perez RR. Obesity induced a leptin-Notch signaling axis in breast cancer. Int J Cancer 2014;134:1605–16.10.1002/ijc.28496Suche in Google Scholar PubMed PubMed Central
84. Guo S, Gonzalez-Perez RR. Notch, IL-1 and leptin crosstalk outcome (NILCO) is critical for leptin-induced proliferation, migration and VEGF/VEGFR-2 expression in breast cancer. PLoS ONE 2011;6:e21467.10.1371/journal.pone.0021467Suche in Google Scholar PubMed PubMed Central
85. Gonzalez RR, Leary K, Petrozza JC, Leavis PC. Leptin regulation of the interleukin-1 system in human endometrial cells. Mol Hum Reprod 2003;9:151–8.10.1093/molehr/gag022Suche in Google Scholar PubMed
86. Faggioni R. IL-1 beta mediates leptin induction during inflammation. Am J Physiology 1998;274:R204–8.10.1152/ajpregu.1998.274.1.R204Suche in Google Scholar PubMed
87. Colbert LS, Wilson K, Kim S, Liu Y, Oprea-Ilies G, Gillespie C, Dickson T, Newman G, Gonzalez-Perez RR. Differential expression of NILCO reveals pathogenesis of human breast cancer. BMC Cancer 2014;14:249.10.1186/1471-2407-14-249Suche in Google Scholar PubMed PubMed Central
88. Gillespie C, Quarshie A, Penichet M, Gonzalez-Perez RR. Potential role of leptin signaling in DMBA-induced mammary tumors by non-responsive C57BL/6J mice fed a high-fat diet. J Carcinog Mutagen 2012;3:132.Suche in Google Scholar
89. Zhou W, Guo S, Gonzalez-Perez RR. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer 2011;104:128–37.10.1038/sj.bjc.6606013Suche in Google Scholar PubMed PubMed Central
90. Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Styer AK, Sullivan BT, Sakamoto H, Olawaiye A, Serikawa T, Lynch MP, Rueda BR. Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem 2006;281:26320–8.10.1074/jbc.M601991200Suche in Google Scholar PubMed
91. Daley-Brown D, Lee R, Oprea-Ilies G, Screws E, Matthews R, Pattillo R, Gonzalez-Perez RR. Role of obesity in Leptin-Notch crosstalk (NILCO) in endometrial cancer from African American and Chinese women [abstract]. Cancer Res 2014;74:5044.10.1158/1538-7445.AM2014-5044Suche in Google Scholar
92. Diamandis EP. Tumor markers: past, present, and future. In: Diamandis EP, Fritsche H Jr, Lilja H, Chan D, Schwartz M, editors. Tumor markers: physiology, pathobiology, technology, and clinical applications. Washington, D.C.: AACC Press, 2002:3–8.Suche in Google Scholar
93. Volgestein B, Weinberg RA. Cancer genes and the pathways they control. Nat Med 2004;10:789–99.10.1038/nm1087Suche in Google Scholar PubMed
94. Samarnthai N, Hall K, Yeh I-T. Molecular profiling of endometrial malignancies. Obst Gynecol Intern 2010;162363. doi:10.1155/2010/162363.10.1155/2010/162363Suche in Google Scholar PubMed PubMed Central
95. DeFeo-Jones D, Barnett SF, Fu S, Hancock PJ, Haskell KM, Leander KR, McAvoy E, Robinson RG, Duggan ME, Lindsley CW, Zhao Z, Huber HE, Jones RE. Tumor cell sensitization to apoptotic stimuli by selective inhibition of specific Akt/PKB family members. Mol Cancer Ther 2005;4:271–9.10.1158/1535-7163.271.4.2Suche in Google Scholar
96. Kapucuoglu N, Aktepe F, Kaya H, Bircan S, Karahan N, Çiriş M. Immunohistochemical expression of PTEN in normal, hyperplastic and malignant endometrium and its correlation with hormone receptors, bcl-2, bax, and apoptotic index. Pathol Res Pract 2007;203:153–62.10.1016/j.prp.2007.01.003Suche in Google Scholar PubMed
97. Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huff JR, Huber HE, Duggan ME. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 2005;15:761–4.10.1016/j.bmcl.2004.11.011Suche in Google Scholar PubMed
98. Chen M-L, Xu P-Z, Peng X, Chen WS, Guzman G, Yang X, Di Cristofano A, Pandolfi PP, Hay N. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/– mice. Genes Dev 2006;20:1569–74.10.1101/gad.1395006Suche in Google Scholar PubMed PubMed Central
99. Wullschleger S, Sakamoto K, Johnstone L, Duce S, Fleming S, Alessi DR. How moderate changes in Akt T-loop phosphorylation impact on tumorigenesis and insulin resistance. Dis Model Mech 2011;1:95–103.10.1242/dmm.005603Suche in Google Scholar PubMed PubMed Central
100. McDonell DP, Norris JD. Connections and regulation of the human estrogen receptor. Science 2002;296:1642–4.10.1126/science.1071884Suche in Google Scholar PubMed
101. Leslie KK, Stein MP, Kumar NS, Dai D, Stephens J, Angela Wandinger-Ness A, Glueck DH. Progesterone receptor isoform identification and subcellular localization in endometrial cancer. Gynecol Oncol 2005;96:32–41.10.1016/j.ygyno.2004.09.057Suche in Google Scholar PubMed PubMed Central
102. Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen AL. Relationship between abnormal p53 protein and failure to express p21 protein in human breast carcinomas. J Pathol 1997;181:140–5.10.1002/(SICI)1096-9896(199702)181:2<140::AID-PATH745>3.0.CO;2-ASuche in Google Scholar
103. Salvesen HB, Carter SL, Mannelqvist M, Dutt A, Getz G, Stefansson IM, Raeder MB, Sos ML, Engelsen IB, Trovik J, Wik E, Greulich H, Bø TH, Jonassen I, Thomas RK, Zander T, Garraway LA, Oyan AM, Sellers WR, Kalland KH, Meyerson M, Akslen LA, Beroukhim R. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc Natl Acad Sci USA 2009;106:4834–9.10.1073/pnas.0806514106Suche in Google Scholar
104. Salvesen HB, Iversen OE, Akslen LA. Prognostic significance of angiogenesis and Ki-67, p53, and p21 expression: a population-based endometrial carcinoma study. J Clin Oncol 1999;17:1382–90.10.1200/JCO.1999.17.5.1382Suche in Google Scholar
105. Zhu C, Luo J, Shi H, Xie X, Ding Z. Expression of tubulin, p53, ki67, receptors for estrogen, and progesterone in endometrial cancer. Eur J Gynaecol Oncol 2009;30:514–7.Suche in Google Scholar
106. Dowsett M. Pathology challenges for biology-driven trials: the Ki67 experience. J Eur Cancer 2013;49:S3.10.1016/S0959-8049(13)70081-9Suche in Google Scholar
107. Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, Wei Z. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett 2012;314:155–65.10.1016/j.canlet.2011.09.027Suche in Google Scholar
108. Marone M, Ferrandina G, Macchia G, Mozzetti S, de Pasqua A, Benedetti-Panici P, Mancuso S, Scambia G. Bcl-2, Bax, Bcl-xL and Bcl-xS. Expression in neoplastic and normal endometrium. Oncology 2000;58:161–8.10.1159/000012094Suche in Google Scholar
109. Sakuragi N, Salah-eldin A, Watari H, Itoh T, Inoue S, Moriuchi T, Fujimoto S. Bax, Bcl-2, and p53 expression in endometrial cancer. Gynecol Oncol 2002;86:288–96.10.1006/gyno.2002.6742Suche in Google Scholar
110. Zukerberg LR, DeBernardo RL, Kirley SD, D’Apuzzo M, Lynch MP, Littell RD, Duska LR, Boring L, Rueda BR. Loss of cables, a cyclin-dependent kinase regulatory protein, is associated with the development of endometrial hyperplasia and endometrial cancer. Cancer Res 2004;64:202–8.10.1158/0008-5472.CAN-03-2833Suche in Google Scholar
111. Kim JJ, Chapman-Davis E. Role of progesterone in endometrial cancer. Semin Reprod Med 2010;28:81–90.10.1055/s-0029-1242998Suche in Google Scholar
112. Kumar NS, Richer J, Owen G, Litman E, Horwitz KB, Leslie KK. Selective down-regulation of progesterone receptor isoform B in poorly differentiated human endometrial cancer cells: implications for unopposed estrogen action. Cancer Res 1998;58:1860–5.Suche in Google Scholar
113. Scholten AN, Creutzberg CL, van den Broek LJ, Noordijk EM, Smit VT. Nuclear beta-catenin is a molecular feature of type I endometrial carcinoma. J Pathol 2003;201:460–5.10.1002/path.1402Suche in Google Scholar
114. Saegusa M, Hashimura M, Yoshida T, Okayasu I. β-Catenin mutations and aberrant nuclear expression during endometrial tumorigenesis. Br J Cancer 2001;84:209–17.10.1054/bjoc.2000.1581Suche in Google Scholar PubMed PubMed Central
115. Zeng Q, Li W, Lu D, Wu Z, Duan H, Luo Y, Feng J, Yang D, Fu L, Yan X. CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer. Proc Natl Acad Sci USA 2012;109:1127–32.10.1073/pnas.1111053108Suche in Google Scholar PubMed PubMed Central
116. Aldovini D, Demichelis F, Doglioni C, Di V, Galligioni E, Brugnara S, Zeni B, Griso C, Pegoraro C, Zannoni M, Gariboldi M, Balladore E, Mezzanzanica D, Canevari S, Barbareschi M. M-CAM expression as marker of poor prognosis in epithelial ovarian cancer. Int J Cancer 2006;119:1920–6.10.1002/ijc.22082Suche in Google Scholar PubMed
117. Susini T, Amunni G, Molino C, Carriero C, Rapi S, Branconi F, Marchionni M, Taddei G, Scarselli G. Ten-year results of a prospective study on the prognostic role of ploidy in endometrial carcinoma: DNA aneuploidy identifies high-risk cases among the so-called ‘low-risk’ patients with well and moderately differentiated tumors. Cancer 2007;109:882–90.10.1002/cncr.22465Suche in Google Scholar PubMed
118. Pradhan M, Abeler VM, Danielsen HE, Sandstad B, Tropé CG, Kristensen GB, Risberg BA. Prognostic importance of DNA ploidy and DNA index in stage I and II endometrioid adenocarcinoma of the endometrium. Ann Oncol 2012;23:1178–84.10.1093/annonc/mdr368Suche in Google Scholar PubMed PubMed Central
118. Dossus L, Becker S, Rinaldi S, Lukanova A, Tjønneland A, Olsen A, Overvad K, Chabbert-Buffet N, Boutron-Ruault MC, Clavel-Chapelon F, Teucher B, Chang-Claude J, Pischon T, Boeing H, Trichopoulou A, Benetou V, Valanou E, Palli D, Sieri S, Tumino R, Sacerdote C, Galasso R, Redondo ML, Bonet CB, Molina-Montes E, Altzibar JM, Chirlaque MD, Ardanaz E, Bueno-de-Mesquita HB, van Duijnhoven FJ, Peeters PH, Onland-Moret NC, Lundin E, Idahl A, Khaw KT, Wareham N, Allen N, Romieu I, Fedirko V, Hainaut P, Romaguera D, Norat T, Riboli E, Kaaks R. Tumor necrosis factor (TNF)-α, soluble TNF receptors and endometrial cancer risk: the EPIC study. Int J Cancer 2011;129:2032–7.10.1002/ijc.25840Suche in Google Scholar PubMed
120. Choi DS, Kim H-J, Yoon J-H, Yoo S-C, Jo H, Lee SY, Min CK, Ryu H-S. Endometrial cancer invasion depends on cancer-derived tumor necrosis factor-α and stromal derived hepatocyte growth factor. Int J Cancer 2009;124:2528–38.10.1002/ijc.24238Suche in Google Scholar PubMed
121. Bie Y, Zhang Z. Diagnostic value of serum HE4 in endometrial cancer: a meta-analysis. World J Surg Oncol 2014;12:169.10.1186/1477-7819-12-169Suche in Google Scholar PubMed PubMed Central
122. Rong Shao, Kendra Hamel, Petersen L, Cao QJ, Arenas RB, Bigelow C, Bentley B, Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene 2009;28:4456–68.10.1038/onc.2009.292Suche in Google Scholar PubMed PubMed Central
123. Scambia C, Gadducci A, Panici PB, Foti E, Ferdeghini M, Ferrandina G, Amoroso M, Castellani C, Facchini V, Mancuso S. Combined use of CA 125 and CA 15-3 in patients with endometrial carcinoma. Gynecol Oncol 1994;54:292–7.10.1006/gyno.1994.1213Suche in Google Scholar PubMed
124. Agouza EL, Nashar EL. Serum taurine as a marker of endometrial cancer. Open Wom Health J 2011;5:1–6.Suche in Google Scholar
125. Farias-Eisner G, Su F, Robbins T, Kotlerman J, Reddy S, Farias-Eisner R. Validation of serum biomarkers for detection of early- and late-stage endometrial cancer. Am J Obstet Gynecol 2010;202:73.e1–5.10.1016/j.ajog.2009.07.049Suche in Google Scholar PubMed
126. SGO Clinical Practice Endometrial Cancer Working Group, Burke WM, Orr J, Leitao M, Salom E, Gehrig P, Olawaiye AB, Brewer M, Boruta D, Villella J, Herzog T, Abu Shahin F, Society of Gynecologic Oncology Clinical Practice Committee. Endometrial cancer: a review and current management strategies: part I. Gynecol Oncol 2014;134:385–92.10.1016/j.ygyno.2014.05.018Suche in Google Scholar PubMed
127. SGO Clinical Practice Endometrial Cancer Working Group, Burke WM, Orr J, Leitao M, Salom E, Gehrig P, Olawaiye AB, Brewer M, Boruta D, Villella J, Herzog T, Abu Shahin F, Society of Gynecologic Oncology Clinical Practice Committee. Endometrial cancer: a review and current management strategies: part II. Gynecol Oncol 2014;134:393–402.10.1016/j.ygyno.2014.06.003Suche in Google Scholar PubMed
128. Ito K, Watanabe K, Nasim S, Sasano H, Sato S, Yajima A, Silverberg SG, Garrett CT. K-ras point mutations in endometrial carcinoma: effect on outcome is dependent on age of patient. Gynecol Oncol 1996;63:238–46.10.1006/gyno.1996.0313Suche in Google Scholar PubMed
129. Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, Berek JS, Chapman JA, DiSilvestro PA, Horowitz IR, Fiorica JV. Phase II Trial of Trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group Study. Gynecol Oncol 2010;116:15–20.10.1016/j.ygyno.2009.09.025Suche in Google Scholar PubMed PubMed Central
130. Dutt A, Salvesen HB, Chen T-H, Ramos AH, Onofrio RC, Hatton C, Nicoletti R, Winckler W, Grewal R, Hanna M, Wyhs N, Ziaugra L, Richter DJ, Trovik J, Engelsen IB, Stefansson IM, Fennell T, Cibulskis K, Zody MC, Akslen LA, Gabriel S, Wong K-K, Sellers WR, Meyerson M, Greulich H. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Nat Acad Sci USA 2008;105:8713–7.10.1073/pnas.0803379105Suche in Google Scholar PubMed PubMed Central
131. Konecny GE, Kolarova T, O’Brien NA, Winterhoff B, Yang G, Qi J, Qi Z, Venkatesan N, Ayala R, Luo T, Finn RS, Kristof J, Galderisi C, Porta DG, Anderson L, Shi MM, Yovine A, Slamon DJ. Activity of the fibroblast growth factor receptor inhibitors dovitinib (TKI258) and NVP-BGJ398 in human endometrial cancer cells. Mol Cancer Ther 2013;12:632–42.10.1158/1535-7163.MCT-12-0999Suche in Google Scholar PubMed
132. Gozgit JM, Squillace RM, Wongchenko MJ, Miller D, Wardwell S, Mohemmad Q, Narasimhan NI, Wang F, Clackson T, Rivera VM. Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemoth Pharmacol 2013;71:1315–23.10.1007/s00280-013-2131-zSuche in Google Scholar PubMed
133. Konopka B, Janiec-Jankowska A, Kwiatkowska E, Najmoła U, Bidziński M, Olszewski W, Goluda C. PIK3CA mutations and amplification in endometrioid endometrial carcinomas: relation to other genetic defects and clinicopathologic status of the tumors. Hum Pathol 2011;42:1710–9.10.1016/j.humpath.2010.01.030Suche in Google Scholar PubMed
134. Kamat AA, Merritt WM, Coffey D, Lin YG, Patel PR, Broaddus R, Nugent E, Han LY, Landen CN Jr, Spannuth WA, Lu C, Coleman RL, Gershenson DM, Sood AK. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res 2007;13:7487–95.10.1158/1078-0432.CCR-07-1017Suche in Google Scholar PubMed
135. Sanseverino F, Santopietro R, Torricelli M, D’Andrilli G, Russo G, Cevenini G, Bovicelli A, Leoncini L, Scambia G, Petraglia F, Claudio PP, Giordano A. pRb2/p130 and VEGF expression in endometrial carcinoma in relation to angiogenesis and histopathologic tumor grade. Cancer Biol Ther 2006;5:84–8.10.4161/cbt.5.1.2345Suche in Google Scholar PubMed
136. Dobrzycka B, Terlikowski SJ, Kwiatkowski M, Garbowicz M, Kinalski M, Chyczewski L. Prognostic significance of VEGF and its receptors in endometrioid endometrial cancer. Ginekol Pol 2010;81:422–5.Suche in Google Scholar
137. Davies S, Dai D, Pickett G, Thiel K, Korovkina V, Leslie K. Effects of bevacizumab in mouse model of endometrial cancer: defining the molecular basis for resistance. Oncol Rep 2011;25:855–62.Suche in Google Scholar
138. Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative, medicine. J Biol Eng 2014;8:20.10.1186/1754-1611-8-20Suche in Google Scholar PubMed PubMed Central
139. Thomson JA, Itskovic Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts Science 1998;282:1145–7.10.1126/science.282.5391.1145Suche in Google Scholar PubMed
140. Hubner K, Fuhrman G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF 3rd, Boiani M, Schöler HR. Derivation of oocytes from mouse embryonic stem cells. Science 2003;300:1251–6.10.1126/science.1083452Suche in Google Scholar PubMed
141. Guillot PV, O’Donohue K, Kurota H, Fisk NM. Fetal stem cells: betwixt and between. Semin Reprod Med 2006;24:340–7.10.1055/s-2006-952149Suche in Google Scholar PubMed
142. Lobo NA, Shimono K, Quan D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007;23:675–99.10.1146/annurev.cellbio.22.010305.104154Suche in Google Scholar PubMed
143. Kiyoko K. Stem cell in human normal endometriosis and endometrial cancer: characteristics of side population cells. Kaohsiung J Med Sci 2012;28:63–71.10.1016/j.kjms.2011.06.028Suche in Google Scholar PubMed
144. Kyo S, Maida Y, Inoue M. Stem cells in endometrium and endometrial cancer: accumulating evidence and unresolved questions. Cancer Lett 2011;308:123–33.10.1016/j.canlet.2011.05.015Suche in Google Scholar PubMed
145. Lopez J, Valdez-Morales FJ, Benitez-Bribiesca L, Cerbon L, Garcia-Carranca A. Normal and cancer stem cells of the human female reproductive system. Rep Biol Endocrinol 2013;11:53.10.1186/1477-7827-11-53Suche in Google Scholar PubMed PubMed Central
146. Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R, Lo Celso C, Dombkowski D, Preffer F, Cohen KS, Teixeira J, Donahoe PK. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci USA 2008;105:12469–73.10.1073/pnas.0805012105Suche in Google Scholar PubMed PubMed Central
147. Gotte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schüring AN, Kiesel L. Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial cancer. J Pathol 2008;215:317–29.10.1002/path.2364Suche in Google Scholar
148. Kato K. Endometrial cancer stem cells: a new target for cancer therapy. Anticancer Res 2012;32:2283–93.Suche in Google Scholar
149. Howlader N, Noone AM, Krapch M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2010, Bethesda, MD: National Cancer Institute. www.seer.cancer.gov/csr/1975-2010.Suche in Google Scholar
150. Setiawan VW, Pike MC, Kolonel LN, Nomura AM, Goodman MT, Henderson BE. Racial/ethnic differences in endometrial cancer risk: the multiethnic cohort study. Am J Epidemiol 2007;165:262–70.10.1093/aje/kwk010Suche in Google Scholar
151. Smotkin D, Nevadunsky NS, Harris K, Einstein MH, Yu Y, Goldberg GL. Histopathologic differences account for racial disparity in uterine cancer survival. Gynecol Oncol 2012;127:616–9.10.1016/j.ygyno.2012.08.025Suche in Google Scholar
152. Maxwell GL, Risinger JI, Hayes KA, Alvarez AA, Dodge RK, Barrett JC, Berchuck A. Racial disparity in the frequency of PTEN mutations, but not microsatellite instability, in advanced endometrial cancers. Clin Cancer Res 2000;6:2999–3005.Suche in Google Scholar
153. Clifford SL, Kaminetsky CP, Cirisano FD, Dodge R, Soper JT, Clarke-Pearson DL, Berchuck A. Racial disparity in overexpression of the p53 tumor suppressor gene in stage I endometrial cancers. Am J Obstet Gynecol 1997;176:S229–32.10.1016/S0002-9378(97)70380-6Suche in Google Scholar
154. Santin AD, Bellone S, Siegel ER, Palmieri M, Thomas M, Cannon MJ, Kay HH, Roman JJ, Burnett A, Pecorelli S. Racial differences in the overexpression of epidermal growth factor type II receptor (Her2/neu): a major prognostic indicator in uterine serous papillary cancer. Am J Obstet Gynecol 2005;192:813–8.10.1016/j.ajog.2004.10.605Suche in Google Scholar PubMed
155. Fraley J, Risinger JI, Rose GS, Maxwell GL. Racial disparities in blacks with gynecologic cancers. Cancer 2007;110:234–43.10.1002/cncr.22797Suche in Google Scholar PubMed
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Editorial Preface
- Adiposopathy in cancer and (cardio)metabolic diseases: an endocrine approach – Part 2
- Topic 1: Impact of Adiposopathy in Tumoral Disease: Endocrine and Clinical Aspects
- Review Articles
- Obesity and cancer
- Adipose tissue dysfunction and its effects on tumor metabolism
- Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental?
- Adipose tissue, obesity and adipokines: role in cancer promotion
- Obesity-related proliferative diseases: the interaction between adipose tissue and estrogens in post-menopausal women
- Molecular cues on obesity signals, tumor markers and endometrial cancer
Artikel in diesem Heft
- Frontmatter
- Editorial Preface
- Adiposopathy in cancer and (cardio)metabolic diseases: an endocrine approach – Part 2
- Topic 1: Impact of Adiposopathy in Tumoral Disease: Endocrine and Clinical Aspects
- Review Articles
- Obesity and cancer
- Adipose tissue dysfunction and its effects on tumor metabolism
- Local adipocyte cancer cell paracrine loop: can “sick fat” be more detrimental?
- Adipose tissue, obesity and adipokines: role in cancer promotion
- Obesity-related proliferative diseases: the interaction between adipose tissue and estrogens in post-menopausal women
- Molecular cues on obesity signals, tumor markers and endometrial cancer